
MATLAB® Compiler SDK™

COM User's Guide

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler SDK™ COM User's Guide
© COPYRIGHT 2002–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2015 Online only New for Version 6.0 (Release 2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Create and Install COM Components
1

Package a Deployable COM Component 1-2
Add-In and COM Component Registration 1-2

Install COM Components . 1-4

Programming with COM Components
2

General Techniques . 2-2

Register and Reference the Utility Library 2-3

Call the Methods of a Class Instance 2-4
Standard Mapping Technique . 2-4
Variant . 2-5
Pass Input and Output Parameters 2-5

Call COM Objects in Visual C++ Programs 2-7

Pass Arguments . 2-8
Overview . 2-8
Create and Use a varargin Array in Microsoft Visual Basic

Programs . 2-8
Create and Use varargout in Microsoft Visual Basic

Programs . 2-9
Pass an Empty varargin From Microsoft Visual Basic Code . . 2-9

Control Array Formatting and Data Conversion 2-11
Overview . 2-11

iv Contents

Array Formatting Flags . 2-11
Using Array Formatting Flags . 2-12
Using Data Conversion Flags . 2-14
Special Flags for Some Microsoft Visual Basic Types 2-16

Use MATLAB Global Variables in Visual Basic 2-17

Block Execution of Applications that Create Figures 2-20
MCRWaitForFigures . 2-20
Use MCRWaitForFigures to Block Execution 2-20

MATLAB Runtime Options . 2-23
What MATLAB Runtime Options are Supported for COM? . 2-23
How Do I Specify MATLAB Runtime Options? 2-23

Share MATLAB Runtime Instances . 2-24
What Is a Singleton MATLAB Runtime? 2-24
Advantages and Disadvantages of Using a Singleton 2-24

Obtain Registry Information . 2-25

Handle Errors During a Method Call 2-27

Integrate Magic Square into a COM Application 2-28
Overview . 2-28
Creating the MATLAB File . 2-28
Using the Library Compiler App to Create and Build the

Project . 2-28
Creating the Microsoft Visual Basic Project 2-29
Creating the User Interface . 2-29
Creating the Executable in Microsoft Visual Basic 2-31
Testing the Application . 2-31

How the MATLAB Compiler SDK Product Creates
COM Components

3
Overview of Internal Processes . 3-2

Code Generation . 3-2
Create Interface Definitions . 3-2

v

C++ Compilation . 3-2
Linking and Resource Binding . 3-3
Registration of the DLL . 3-3

Component Registration . 3-4
Self-Registering Components . 3-4
Globally Unique Identifier . 3-5
Versioning . 3-6

Data Conversion . 3-8
Conversion Rules . 3-8
Array Formatting Flags . 3-17
Data Conversion Flags . 3-18

Calling Conventions . 3-20
Producing a COM Class . 3-20
IDL Mapping . 3-21
Microsoft Visual Basic Mapping . 3-22

Distribute Integrated COM Applications
4

Package COM Applications . 4-2

About the MATLAB Runtime . 4-3
How is the MATLAB Runtime Different from MATLAB? 4-3
Performance Considerations and the MATLAB Runtime 4-4

Download the MATLAB Runtime Installer 4-5

Install the MATLAB Runtime . 4-6
Install the MATLAB Runtime Interactively 4-6
Install the MATLAB Runtime Non-Interactively 4-7

MATLAB and MATLAB Runtime on Same Machine 4-10
Modifying the Path . 4-10

Multiple MATLAB Runtime Versions on Single Machine . . 4-11

vi Contents

Uninstall MATLAB Runtime . 4-12
Windows . 4-12
Linux . 4-12
Mac . 4-12

Utility Library for Microsoft COM Components
5

Reference Utility Classes . 5-2

Class MWUtil . 5-3
Sub MWInitApplication(pApp As Object) 5-3
Sub MWInitApplicationWithMCROptions(pApp As Object,

[mcrOptionList]) . 5-5
Function IsMCRJVMEnabled() As Boolean 5-6
Function IsMCRInitialized() As Boolean 5-6
Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31]) 5-7
Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As

Boolean = False], [pVar0], [pVar1], ..., [pVar31]) 5-8
Sub MWDate2VariantDate(pVar) . 5-10

Class MWFlags . 5-12
Property ArrayFormatFlags As MWArrayFormatFlags 5-12
Property DataConversionFlags As MWDataConversionFlags 5-15
Sub Clone(ppFlags As MWFlags) . 5-17

Class MWStruct . 5-18
Sub Initialize([varDims], [varFieldNames]) 5-18
Property Item([i0], [i1], ..., [i31]) As MWField 5-19
Property NumberOfFields As Long 5-22
Property NumberOfDims As Long . 5-22
Property Dims As Variant . 5-22
Property FieldNames As Variant . 5-22
Sub Clone(ppStruct As MWStruct) 5-23

Class MWField . 5-25
Property Name As String . 5-25
Property Value As Variant . 5-25
Property MWFlags As MWFlags . 5-25
Sub Clone(ppField As MWField) . 5-25

vii

Class MWComplex . 5-27
Property Real As Variant . 5-27
Property Imag As Variant . 5-27
Property MWFlags As MWFlags . 5-28
Sub Clone(ppComplex As MWComplex) 5-28

Class MWSparse . 5-30
Property NumRows As Long . 5-30
Property NumColumns As Long . 5-30
Property RowIndex As Variant . 5-30
Property ColumnIndex As Variant 5-31
Property Array As Variant . 5-31
Property MWFlags As MWFlags . 5-31
Sub Clone(ppSparse As MWSparse) 5-31

Class MWArg . 5-34
Property Value As Variant . 5-34
Property MWFlags As MWFlags . 5-34
Sub Clone(ppArg As MWArg) . 5-34

Enum mwArrayFormat . 5-36

Enum mwDataType . 5-37

Enum mwDateFormat . 5-38

Functions — Alphabetical List
6

1

Create and Install COM Components

• “Package a Deployable COM Component” on page 1-2
• “Install COM Components” on page 1-4

1 Create and Install COM Components

1-2

Package a Deployable COM Component

Add-In and COM Component Registration

Note: COM components are used in both MATLAB Compiler™ and MATLAB Compiler
SDK, therefore some of the instructions relating to building and packaging COM
components and add-ins can be shared between products.

When you create your COM component, it is registered in either HKEY_LOCAL_MACHINE
or HKEY_CURRENT_USER, based on your log-in privileges.

If you find you need to change your run-time permissions due to security standards
imposed by Microsoft® or your installation, you can do one of the following before
deploying your COM component or add-in:

• Log on as administrator before running your COM component or add-in
• Run the following mwregsvr command prior to running your COM component or add-

in, as follows:

mwregsvr [/u] [/s] [/useronly] project_name.dll

where:

• /u allows any user to unregister a COM component or add-in for this server
• /s runs this command silently, generating no messages. This is helpful for use in

silent installations.
• /useronly allows only the currently logged-in user to run the COM component or

add-in on this server

Caution If your COM component is registered in the USER hive, it will not be visible to
Windows Vista™ or Windows® 7 users running as administrator on systems with UAC
(User Access Control) enabled.

If you register a component to the USER hive under Windows 7 or Windows Vista,
your COM component may fail to load when running with elevated (administrator)
privileges.

If this occurs, do the following to re-register the component to the LOCAL MACHINE hive:

 Package a Deployable COM Component

1-3

1 Unregister the component with this command:

mwregsvr /u /useronly my_dll.dll

2 Reregister the component to the LOCAL MACHINE hive with this command:

mwregsvr my_dll.dll

1 Create and Install COM Components

1-4

Install COM Components

To install and deploy a COM object created with MATLAB Compiler SDK:

1 Install the MATLAB Runtime as described in “Install MATLAB Runtime”.
2 Build and package as described in “Compile COM Components with Library

Compiler App” and “Package a Deployable COM Component” on page 1-2.
3 Copy the package to the target computer and run the package.
4 From a Windows command prompt on the target system, navigate to the folder

where you saved the package. If you use the command dir, you should see the .dll
created for your COM object. You will need to register the .dll manually using the
command regsvr32, as follows:

regsvr32 myCom_1_0.dll

2

Programming with COM Components

• “General Techniques” on page 2-2
• “Register and Reference the Utility Library” on page 2-3
• “Call the Methods of a Class Instance” on page 2-4
• “Call COM Objects in Visual C++ Programs” on page 2-7
• “Pass Arguments ” on page 2-8
• “Control Array Formatting and Data Conversion” on page 2-11
• “Use MATLAB Global Variables in Visual Basic” on page 2-17
• “Block Execution of Applications that Create Figures” on page 2-20
• “MATLAB Runtime Options” on page 2-23
• “Share MATLAB Runtime Instances” on page 2-24
• “Obtain Registry Information” on page 2-25
• “Handle Errors During a Method Call” on page 2-27
• “Integrate Magic Square into a COM Application” on page 2-28

2 Programming with COM Components

2-2

General Techniques

After you package and install a COM component, you can access the component in any
program that supports COM, such as Microsoft Visual Basic®, Microsoft Visual C++®, or
Visual C#.

Your code module must do the following:

• Load the components created by the compiler

• “Register and Reference the Utility Library” on page 2-3
• Call methods of the component class

• “Call the Methods of a Class Instance” on page 2-4
• “Call COM Objects in Visual C++ Programs” on page 2-7
• “Obtain Registry Information” on page 2-25

• Deal with data conversion and parameter passing

• “Pass Arguments ” on page 2-8
• “Control Array Formatting and Data Conversion” on page 2-11
• “Use MATLAB Global Variables in Visual Basic” on page 2-17

• Process errors

• “Handle Errors During a Method Call” on page 2-27

Note: These topics provide general information on how to integrate COM components
created with the compiler into your COM-compliant programs. The presentation focuses
on the special programming techniques needed for components based on the MATLAB
product and generated by the compiler. It assumes that you have a working knowledge of
the programming language used in these programs.

For information about programming with COM objects in Microsoft Visual Studio®, see
articles in the MSDN Library, such as Calling COM Components from .NET Clients.

http://msdn.microsoft.com/library/
http://msdn.microsoft.com/en-us/library/ms973800.aspx

 Register and Reference the Utility Library

2-3

Register and Reference the Utility Library

The MWComUtil library provided with MATLAB Compiler SDK is freely distributable.
The MWComUtil library includes seven classes and three enumerated types. These
utilities are required for array processing, and they provide type definitions used in data
conversion.

The library is contained in the file mwcomutil.dll. It must be registered once on each
machine that uses components created with the compiler.

If you are on a development machine that does not have an installation of MATLAB
Compiler SDK, register the MWComUtil library at the system prompt with the command:

mwregsvr mwcomutil.dll

To use the types in the library, make sure that you reference the MWComUtil library in
your current project.

Note: You must specify the full path of the component when calling mwregsvr, or make
the call from the folder in which the component resides. mwregsvr.exe is supplied with
the MATLAB Runtime.

2 Programming with COM Components

2-4

Call the Methods of a Class Instance

In this section...

“Standard Mapping Technique” on page 2-4
“Variant” on page 2-5
“Pass Input and Output Parameters” on page 2-5

Standard Mapping Technique

After you create a class instance, you can call the class methods to access the
encapsulated MATLAB functions. The MATLAB Compiler SDK product uses a standard
technique to map the original MATLAB function syntax to the method's argument list.
This standard mapping technique is as follows:

• nargout

When a method has output arguments, the first argument is always nargout,
which is of type Long. This input parameter passes the normal MATLAB nargout
parameter to the encapsulated function and specifies how many outputs are
requested. Methods that do not have output arguments do not pass a nargout
argument.

• Output parameters

Following nargout are the output parameters listed in the same order as they appear
on the left side of the original MATLAB function.

• Input parameters

Next come the input parameters listed in the same order as they appear on the right
side of the original MATLAB function.

For example, the most generic MATLAB function is:

function [Y1, Y2, ..., varargout] = foo(X1, X2, ..., varargin)

This function maps directly to the following Microsoft Visual Basic signature:

Sub foo(nargout As Long, _

 Y1 As Variant, _

 Y2 As Variant, _

 Call the Methods of a Class Instance

2-5

 .

 .

 varargout As Variant, _

 X1 As Variant, _

 X2 As Variant, _

 .

 .

 varargin As Variant)

See “Calling Conventions” on page 3-20 for more details and examples of the
standard mapping from MATLAB functions to COM class method calls.

Variant

All input and output arguments are typed as Variant, the default Visual Basic data
type. The Variant type can hold any of the basic Visual Basic types, arrays of any
type, and object references. See “Data Conversion” on page 3-8 for details about the
conversion of any basic type to and from MATLAB data types.

In general, you can supply any Visual Basic type as an argument to a class method, with
the exception of Visual Basic User Defined Types (UDTs).

When you pass a simple Variant type as an output parameter, the called method
allocates the received data and frees the original contents of the Variant. In this case
it is sufficient to dimension each output argument as a single Variant. When an object
type (like an Excel® Range) is passed as an output parameter, the object reference is
passed in both directions, and the object's Value property receives the data.

Pass Input and Output Parameters

The following examples show how to pass input and output parameters to COM
component class methods in Visual Basic.

The first example is a function, foo, that takes two arguments and returns one output
argument. The foo function dispatches a call to a class method that corresponds to a
MATLAB function of the form function y = foo(x1,x2).

Function foo(x1 As Variant, x2 As Variant) As Variant

 Dim aClass As Object

 Dim y As Variant

2 Programming with COM Components

2-6

 On Error Goto Handle_Error

 Set aClass = CreateObject("mycomponent.myclass.1_0")

 Call aClass.foo(1,y,x1,x2)

 foo = y

 Exit Function

Handle_Error:

 foo = Err.Description

End Function

The second example rewrites the foo function as a subroutine:

Sub foo(Xout As Variant, X1 As Variant, X2 As Variant)

 Dim aClass As Object

 On Error Goto Handle_Error

 Set aClass = CreateObject("mycomponent.myclass.1_0")

 Call aClass.foo(1,Xout,X1,X2)

 Exit Sub

Handle_Error:

 MsgBox(Err.Description)

End Sub

 Call COM Objects in Visual C++ Programs

2-7

Call COM Objects in Visual C++ Programs

Note: You must choose a Microsoft compiler to compile and use any COM object.

Use the COM object you have created as follows:

1 Create a Visual C++ program in a file named matlab_com_example.cpp with the
following code:
#include <iostream>

using namespace std;

#include "mycomponent\src\mycomponent_idl.h"

#include "mycomponent\src\mycomponent_idl_i.c"

int main() {

// Initialize argument variables

 VARIANT x, y, out1;

//Initialize the COM library

 HRESULT hr = CoInitialize(NULL);

//Create an instance of the COM object you created

 Imycomponentclass *pImycomponentclass;

 hr=CoCreateInstance

 (CLSID_mycomponentclass, NULL, CLSCTX_INPROC_SERVER,

 IID_Imycomponentclass,(void **)&pImycomponentclass);

// Set the input arguments to the COM method

 x.vt=VT_R8;

 y.vt=VT_R8;

 x.dblVal=7.3;

 y.dblVal=1946.0;

// Access the method with arguments and receive the output out1

 hr=(pImycomponentclass -> adddoubles(1,&out1,x,y));

// Print the output

 cout << "The input values were " << x.dblVal << " and "

 << y.dblVal << ".\n";

 cout << "The output of feeding the inputs into the adddoubles method is "

 << out1.dblVal << ".\n";

// Uninitialize COM

 CoUninitialize();

 return 0;

}

2 In the MATLAB Command Window, compile the program as follows:

mbuild matlab_com_example.cpp

When you run the executable, the program displays two numbers and their sum, as
returned by the COM object’s adddoubles.

2 Programming with COM Components

2-8

Pass Arguments

In this section...

“Overview” on page 2-8
“Create and Use a varargin Array in Microsoft Visual Basic Programs” on page 2-8
“Create and Use varargout in Microsoft Visual Basic Programs” on page 2-9
“Pass an Empty varargin From Microsoft Visual Basic Code” on page 2-9

Overview

When it encapsulates MATLAB functions, the MATLAB Compiler SDK product adds
the MATLAB function arguments to the argument list of the class methods it creates.
Thus, if a MATLAB function uses varargin and/or varargout, the compiler adds these
arguments to the argument list of the class method. They are added at the end of the
argument list for input and output arguments.

You can pass multiple arguments as a varargin array by creating a Variant array,
assigning each element of the array to the respective input argument.

See “Producing a COM Class” on page 3-20 for more information about mapping of
input and output arguments.

Create and Use a varargin Array in Microsoft Visual Basic Programs

The following example creates a varargin array to call a method encapsulating a
MATLAB function of the form y=foo(varargin).

The MWUtil class included in the MWComUtil utility library provides the MWPack helper
function to create varargin parameters.

Function foo(x1 As Variant, x2 As Variant, x3 As Variant, _

 x4 As Variant, x5 As Variant) As Variant

 Dim aClass As Object

 Dim v(1 To 5) As Variant

 Dim y As Variant

 On Error Goto Handle_Error

 v(1) = x1

 Pass Arguments

2-9

 v(2) = x2

 v(3) = x3

 v(4) = x4

 v(5) = x5

 aClass = CreateObject("mycomponent.myclass.1_0")

 Call aClass.foo(1,y,v)

 foo = y

 Exit Function

Handle_Error:

 foo = Err.Description

End Function

Create and Use varargout in Microsoft Visual Basic Programs

The next example processes a varargout argument as three separate arguments. This
function uses the MWUnpack function in the utility library.

The MATLAB function used is varargout=foo(x1,x2).

Sub foo(Xout1 As Variant, Xout2 As Variant, Xout3 As Variant, _

 Xin1 As Variant, Xin2 As Variant)

 Dim aClass As Object

 Dim aUtil As Object

 Dim v As Variant

 On Error Goto Handle_Error

 aUtil = CreateObject("MWComUtil.MWUtil")

 aClass = CreateObject("mycomponent.myclass.1_0")

 Call aClass.foo(3,v,Xin1,Xin2)

 Call aUtil.MWUnpack(v,0,True,Xout1,Xout2,Xout3)

 Exit Sub

Handle_Error:

 MsgBox(Err.Description)

End Sub

Pass an Empty varargin From Microsoft Visual Basic Code

In MATLAB, varargin inputs to functions are optional, and may be present or omitted
from the function call. However, from Microsoft Visual Basic, function signatures are
more strict—if varargin is present among the MATLAB function inputs, the VBA call
must include varargin, even if you want it to be empty. To pass in an empty varargin,
pass the Null variant, which is converted to an empty MATLAB cell array when passed.

2 Programming with COM Components

2-10

Passing an Empty varargin From VBA Code

The following example illustrates how to pass the null variant in order to pass an empty
varargin:

Function foo(x1 As Variant, x2 As Variant, x3 As Variant, _

 x4 As Variant, x5 As Variant) As Variant

 Dim aClass As Object

 Dim v(1 To 5) As Variant

 Dim y As Variant

 On Error Goto Handle_Error

 v(1) = x1

 v(2) = x2

 v(3) = x3

 v(4) = x4

 v(5) = x5

 aClass = CreateObject("mycomponent.myclass.1_0")

 'Call aClass.foo(1,y,v)

 Call aClass.foo(1,y,Null)

 foo = y

 Exit Function

Handle_Error:

 foo = Err.Description

End Function

 Control Array Formatting and Data Conversion

2-11

Control Array Formatting and Data Conversion

In this section...

“Overview” on page 2-11
“Array Formatting Flags” on page 2-11
“Using Array Formatting Flags” on page 2-12
“Using Data Conversion Flags” on page 2-14
“Special Flags for Some Microsoft Visual Basic Types” on page 2-16

Overview

Generally, you should write your application code so that it matches the arguments
(input and output) of the MATLAB functions that are encapsulated in the COM objects
that you are using. The mapping of arguments from the MATLAB product to Microsoft
Visual Basic is fully described in MATLAB to COM VARIANT Conversion Rules and
COM VARIANT to MATLAB Conversion Rules.

In some cases it is not possible to match the two kinds of arguments exactly; for example,
when existing MATLAB code is used in conjunction with a third-party product such
as Microsoft Excel. For these and other cases, the compiler supports formatting and
conversion flags that control how array data is formatted in both directions (input and
output).

When it creates a component, the compiler includes a component property named
MWFlags. The MWFlags property is readable and writable.

The MWFlags property consists of two sets of constants: arrayformattingflags and
dataconversionflags. Array formatting flags affect the transformation of arrays, whereas
data conversion flags deal with type conversions of individual array elements.

Array Formatting Flags

The following tables provide a quick overview of how to use array formatting flags to
specify conversions for input and output arguments.

Name of Flag Possible Values of Flag Results of Conversion

InputArrayFormat mwArrayFormatMatrix

(default)
MATLAB matrix from general
Variant data.

2 Programming with COM Components

2-12

Name of Flag Possible Values of Flag Results of Conversion

mwArrayFormatCell MATLAB cell array from general
Variant data.

Array data from an Excel range is coded in Visual Basic as an
array of Variant. Since MATLAB functions typically have matrix
arguments, using the default setting makes sense when you are
dealing with data from Excel.
mwArrayFormatAsIs Array of Variant
Converts arrays according to the default conversion rules listed in
MATLAB to COM VARIANT Conversion Rules.
mwArrayFormatMatrix A Variant containing an array of a

basic type.

OutputArrayFormat

mwArrayFormatCell MATLAB cell array from general
Variant data.

AutoResizeOutput When this flag is set, the target range automatically resizes to fit
the resulting array. If this flag is not set, the target range must be at
least as large as the output array or the data is truncated. Use this
flag for Excel Range objects passed directly as output parameters.

TransposeOutput Transposes all array output.

Use this flag when dealing with an encapsulated MATLAB function
whose output is a one-dimensional array. By default, the MATLAB
product handles one-dimensional arrays as 1-by-n matrices (that is,
as row vectors). Change this default with the TransposeOutput flag
if you prefer column output.

Using Array Formatting Flags

Consider the following Microsoft Visual Basic function definition for foo:

Sub foo()

 Dim aClass As mycomponent.myclass

 Dim var1(1 To 2, 1 To 2), var2 As Variant

 Dim x(1 To 2, 1 To 2) As Double

 Dim y1,y2 As Variant

 On Error Goto Handle_Error

 Control Array Formatting and Data Conversion

2-13

 var1(1,1) = 11#

 var1(1,2) = 12#

 var1(2,1) = 21#

 var1(2,2) = 22#

 x(1,1) = 11

 x(1,2) = 12

 x(2,1) = 21

 x(2,2) = 22

 var2 = x

 Set aClass = New mycomponent.myclass

 Call aClass.foo(1,y1,var1)

 Call aClass.foo(1,y2,var2)

 Exit Sub

Handle_Error:

 MsgBox(Err.Description)

End Sub

The example has two Variant variables, var1 and var2. These two variables contain
the same numerical data, but internally they are structured differently; one is a 2-by-2
array of variant and the other is a 1-by-1 array of variant. The variables are described
in the following table.

Scenario var1 var2

Numerical data 11 12

21 22

11 12

21 22

Internal structure in Visual
Basic

2-by-2 array of Variant.
Each variant is a 1-by-1
array of Double.

1-by-1 Variant, which
contains a 2-by-2 array of
Double

Result of conversion by the
compiler according to the
default data conversion
rules

2-by-2 cell array. Each
element is a 1-by-1 array of
double.

2-by-2 matrix. Each element
is a Double.

The InputArrayFormat flag controls how the arrays are handled. In this example, the
value for the InputArrayFormat flag is the default, which is mwArrayFormatMatrix.
The default causes an array to be converted to a matrix. See the table for the result of the
conversion of var2.

To specify a cell array (instead of a matrix) as input to the function call, set the
InputArrayFormat flag to mwArrayFormatCell instead of the default. Do this in this
example by adding the following line after creating the class and before the method call:

2 Programming with COM Components

2-14

aClass .MWFlags.ArrayFormatFlags.InputArrayFormat =

mwArrayFormatCell

Setting the flag to mwArrayFormatCell causes all array input to the encapsulated
MATLAB function to be converted to cell arrays.

Modifying Output Format

Similarly, you can manipulate the format of output arguments using the
OutputArrayFormat flag. You can also modify array output with the
AutoResizeOutput and TransposeOutput flags.

Output Format in VBScript

When calling a COM object in VBScript you need to make sure that you set MWFlags for
the COM object to specify cell array for the output. Also, you must use an enumeration
(the enumeration value for a cell array is 2) to make the specification (rather than
specifying mwArrayFormatCell).

The following sample code shows how to accomplish this:

obj.MWFlags.ArrayFormatFlags.OutputArrayFormat = 2

Using Data Conversion Flags

Two data conversion flags, CoerceNumericToType and InputDateFormat, govern how
numeric and date types are converted from Visual Basic to MATLAB.

This example converts var1 of type Variant/Integer to an int16 and var2 of type
Variant/Double to a double.

Sub foo()

 Dim aClass As mycomponent.myclass

 Dim var1, var2 As Variant

 Dim y As Variant

 On Error Goto Handle_Error

 var1 = 1

 var2 = 2#

 Set aClass = New mycomponent.myclass

 Call aClass.foo(1,y,var1,var2)

 Exit Sub

Handle_Error:

 Control Array Formatting and Data Conversion

2-15

 MsgBox(Err.Description)

End Sub

If the original MATLAB function expects doubles for both arguments, this code
might cause an error. One solution is to assign a double to var1, but this may not be
possible or desirable. As an alternative, you can set the CoerceNumericToType flag to
mwTypeDouble, causing the data converter to convert all numeric input to double. To do
this, place the following line after creating the class and before calling the methods:

aClass .MWFlags.DataConversionFlags.CoerceNumericToType =

mwTypeDouble

The next example shows how to use the InputDateFormat flag, which controls how the
Visual Basic Date type is converted. The example sends the current date and time as an
input argument and converts it to a string.

Sub foo()

 Dim aClass As mycomponent.myclass

 Dim today As Date

 Dim y As Variant

 On Error Goto Handle_Error

 today = Now

 Set aClass = New mycomponent.myclass

 aClass. MWFlags.DataConversionFlags.InputDateFormat =

mwDateFormatString

 Call aClass.foo(1,y,today)

 Exit Sub

Handle_Error:

 MsgBox(Err.Description)

End Sub

The next example uses an MWArg object to modify the conversion flags for one argument
in a method call. In this case the first output argument (y1) is coerced to a Date, and
the second output argument (y2) uses the current default conversion flags supplied by
aClass.

Sub foo(y1 As Variant, y2 As Variant)

 Dim aClass As mycomponent.myclass

 Dim ytemp As MWArg

 Dim today As Date

 On Error Goto Handle_Error

 today = Now

2 Programming with COM Components

2-16

 Set aClass = New mycomponent.myclass

 Set ytemp = New MWArg

 ytemp.MWFlags.DataConversionFlags.OutputAsDate = True

 Call aClass.foo(2, ytemp, y2, today)

 y1 = ytemp

 Exit Sub

Handle_Error:

 MsgBox(Err.Description)

End Sub

Special Flags for Some Microsoft Visual Basic Types

In general, you use the MWFlags class property to change specified behaviors of the
conversion from Microsoft Visual Basic Variant types to MATLAB types, and vice
versa. There are some exceptions — some types generated by the compiler have their
own MWFlags property. When you use these particular types, the method call behaves
according to the settings of the type and not of the class containing the method being
called. The exceptions are for the following types generated by the compiler:

• MWStruct

• MWField

• MWComplex

• MWSparse

• MWArg

Note: The MWArg class is supplied specifically for the case when a particular argument
needs different settings from the default class properties.

 Use MATLAB Global Variables in Visual Basic

2-17

Use MATLAB Global Variables in Visual Basic

Class properties allow an object to retain an internal state between method calls.

Global variables are variables that are declared in the MATLAB product with the
global keyword. MATLAB Compiler SDK automatically converts all global variables
shared by the MATLAB files that make up a class to properties on that class.

Properties are useful when you have a large array containing values that do not change
often, but are operated on frequently. In such cases, setting the array as a property saves
the overhead required to pass it to a method every time it is called.

The following example shows how to use a class property in a matrix factorization class.
The example develops a class that performs Cholesky, LU, and QR factorizations on the
same matrix. It stores the input matrix as a class property so that it is not passed to the
factorization routines.

Consider these three MATLAB files.

Cholesky.m

function [L] = Cholesky()

 global A;

 if (isempty(A))

 L = [];

 return;

 end

 L = chol(A);

LUDecomp.m

function [L,U] = LUDecomp()

 global A;

 if (isempty(A))

 L = [];

 U = [];

 return;

 end

 [L,U] = lu(A);

QRDecomp.m

function [Q,R] = QRDecomp()

 global A;

2 Programming with COM Components

2-18

 if (isempty(A))

 Q = [];

 R = [];

 return;

 end

 [Q,R] = qr(A);

These three files share a common global variable A. Each function performs a matrix
factorization on A and returns the results.

To build the class:

1 Create a compiler project named mymatrix with a version of 1.0.
2 Add a single class called myfactor to the component.
3 Add the above three MATLAB files to the class.
4 Build the component.

Use the following Visual Basic subroutine to test the myfactor class:

Sub TestFactor()

 Dim x(1 To 2, 1 To 2) As Double

 Dim C As Variant, L As Variant, U As Variant, _

 Q As Variant, R As Variant

 Dim factor As myfactor

 On Error GoTo Handle_Error

 Set factor = New myfactor

 x(1, 1) = 2#

 x(1, 2) = -1#

 x(2, 1) = -1#

 x(2, 2) = 2#

 factor.A = x

 Call factor.cholesky(1, C)

 Call factor.ludecomp(2, L, U)

 Call factor.qrdecomp(2, Q, R)

 Exit Sub

Handle_Error:

 MsgBox (Err.Description)

End Sub

Run the subroutine, which does the following:

1 Creates an instance of the myfactor class

 Use MATLAB Global Variables in Visual Basic

2-19

2 Assigns a double matrix to the property A
3 Calls the three factorization methods

2 Programming with COM Components

2-20

Block Execution of Applications that Create Figures
In this section...

“MCRWaitForFigures” on page 2-20
“Use MCRWaitForFigures to Block Execution” on page 2-20

MCRWaitForFigures

The MATLAB Compiler SDK product adds a MCRWaitForFigures method to each class
in the COM components that it creates. MCRWaitForFigures takes no arguments. Your
application can call MCRWaitForFigures any time during execution.

The purpose of MCRWaitForFigures is to block execution of a calling program as long
as figures created in encapsulated MATLAB code are displayed. Typically you use
MCRWaitForFigures when:

• There are one or more figures open that were created by an instance of a COM object
created by the compiler.

• The method that displays the graphics requires user input before continuing.
• The method that calls the figures was called from main() in a console program.

When MCRWaitForFigures is called, execution of the calling program is blocked if any
figures created by the calling object remain open.

Caution Be careful when calling the MCRWaitForFigures method. Calling this method
from a Microsoft Visual Basic UI or from an interactive program such as Microsoft
Excel can hang the application. This method should be called only from console-based
programs.

Use MCRWaitForFigures to Block Execution

The following example illustrates using MCRWaitForFigures from a Microsoft Visual
C++ console application. The example uses a COM object created by the compiler; the
object encapsulates MATLAB code that draws a simple plot.

1 Create a work folder for your source code. In this example, the folder is D:\work
\plotdemo.

2 Create the following MATLAB file in this folder:

 Block Execution of Applications that Create Figures

2-21

drawplot.m

function drawplot()

 plot(1:10);

3 Use the compiler to create a COM component with the following properties:

Component name plotdemo

Class name plotdemoclass

Version 1.0

Note: Instead of using the Library Compiler app, you can create the component by
issuing the following command at the MATLAB prompt:

mcc -d 'D:\work\plotdemo\src' -v -B 'ccom:plotdemo,plotdemoclass,1.0'

 'D:\Work\plotdemo\drawplot.m'

4 Create a Visual C++ program in a file named runplot.cpp with the following code:

#include "src\plotdemo_idl.h"

#include "src\plotdemo_idl_i.c"

int main()

{

 // Initialize the COM library

 HRESULT hr = CoInitialize(NULL);

 // Create an instance of the COM object you created

 Iplotdemoclass* pIplotdemoclass = NULL;

 hr = CoCreateInstance(CLSID_plotdemoclass, NULL,

 CLSCTX_INPROC_SERVER, IID_Iplotdemoclass,

 (void **)&pIplotdemoclass);

 // Call the drawplot method

 hr = pIplotdemoclass->drawplot();

 // Block execution until user dismisses the figure window

 hr = pIplotdemoclass->MCRWaitForFigures();

 // Uninitialize COM

 CoUninitialize();

 return 0;

}

5 In the MATLAB Command Window, build the application as follows:

mbuild runplot.cpp

2 Programming with COM Components

2-22

When you run the application, the program displays a plot from 1 to 10 in a
MATLAB figure window. The application ends when you dismiss the figure.

Note: To see what happens without the call to MCRWaitForFigures. comment out
the call, rebuild the application, and run it. In this case, the figure is drawn and is
immediately destroyed as the application exits.

 MATLAB Runtime Options

2-23

MATLAB Runtime Options

When you roll-out a COM component to end users, there are times when you need to
specify MATLAB Runtime options to create a log file or improve performance.

Pass these options with mcc

What MATLAB Runtime Options are Supported for COM?

• -nojvm — Launches the MATLAB Runtime without a Java® Virtual Machine
(JVM™). This can improve performance of deployed applications, in some cases.

• -logfile — Allows you to specify a log file name.

How Do I Specify MATLAB Runtime Options?

You do this by invoking the following MWUtil API calls:

• Sub MWInitApplicationWithMCROptions(pApp As Object,

[mcrOptionList])

• Function IsMCRJVMEnabled() As Boolean

• Function IsMCRInitialized() As Boolean

2 Programming with COM Components

2-24

Share MATLAB Runtime Instances

In this section...

“What Is a Singleton MATLAB Runtime?” on page 2-24
“Advantages and Disadvantages of Using a Singleton” on page 2-24

What Is a Singleton MATLAB Runtime?

You create an instance of the MATLAB Runtime that can be shared among all
subsequent class instances within a component. This is commonly called a shared
MATLAB Runtime instance or a Singleton runtime.

Advantages and Disadvantages of Using a Singleton

In most cases, a singleton MATLAB Runtime will provide many more advantages than
disadvantages. Following are examples of when you might and might not create a shared
MATLAB Runtime instance.

When You Should Use a Singleton

If you have multiple users running from a specific instance of MATLAB, using a
singleton will most likely:

• Utilize system memory more efficiently
• Decrease MATLAB Runtime start-up or initialization time

When You Might Avoid Using a Singleton

Using a singleton may not benefit you if your application uses a large number of global
variables. This causes crosstalk.

 Obtain Registry Information

2-25

Obtain Registry Information

When programming with COM components, you might need details about a component.
You can use componentinfo, which is a MATLAB function, to query the system registry
for details about any installed component.

This example queries the registry for a component named mycomponent and a version of
1.0. This component has four methods: mysum, randvectors, getdates, and myprimes;
two properties: m and n; and one event: myevent.

Info = componentinfo('mycomponent', 1, 0)

Info =

 Name: 'mycomponent'

 TypeLib: 'mycomponent 1.0 Type Library'

 LIBID: '{3A14AB34-44BE-11D5-B155-00D0B7BA7544}'

 MajorRev: 1

 MinorRev: 0

 FileName: 'D:\Work\ mycomponent\distrib\mycomponent_1_0.dll'

 Interfaces: [1x1 struct]

 CoClasses: [1x1 struct]

Info.Interfaces

ans =

 Name: 'Imyclass'

 IID: '{3A14AB36-44BE-11D5-B155-00D0B7BA7544}'

Info.CoClasses

ans =

 Name: 'myclass'

 CLSID: '{3A14AB35-44BE-11D5-B155-00D0B7BA7544}'

 ProgID: 'mycomponent.myclass.1_0'

 VerIndProgID: 'mycomponent.myclass'

InprocServer32:'D:\Work\mycomponent\distrib\mycomponent_1_0.dll'

 Methods: [1x4 struct]

 Properties: {'m', 'n'}

 Events: [1x1 struct]

2 Programming with COM Components

2-26

Info.CoClasses.Events.M

ans =

function myevent(x, y)

Info.CoClasses.Methods

ans =

1x4 struct array with fields:

 IDL

 M

 C

 VB

Info.CoClasses.Methods.M

ans =

function [y] = mysum(varargin)

ans =

function [varargout] = randvectors()

ans =

function [x] = getdates(n, inc)

ans =

function [p] = myprimes(n)

The returned structure contains fields corresponding to the most important information
from the registry and type library for the component.

 Handle Errors During a Method Call

2-27

Handle Errors During a Method Call

If your application generates an error while creating a class instance or during a class
method call, the current procedure creates an exception.

Microsoft Visual Basic provides an exception handling capability through the On Error
Goto <label> statement, in which the program execution jumps to <label> when an
error occurs. (<label> must be located in the same procedure as the On Error Goto
statement.) All errors in Visual Basic are handled this way, including errors within the
MATLAB code that you have encapsulated into a COM object. An exception creates a
Visual Basic ErrObject object in the current context in a variable called Err.

See the Microsoft Visual Basic documentation for a detailed discussion on Visual Basic
error handling.

2 Programming with COM Components

2-28

Integrate Magic Square into a COM Application

In this section...

“Overview” on page 2-28
“Creating the MATLAB File” on page 2-28
“Using the Library Compiler App to Create and Build the Project” on page 2-28
“Creating the Microsoft Visual Basic Project” on page 2-29
“Creating the User Interface” on page 2-29
“Creating the Executable in Microsoft Visual Basic” on page 2-31
“Testing the Application” on page 2-31

Overview

This example uses a simple MATLAB file that takes a single input and creates a magic
square of that size. It then builds a COM component using this MATLAB file as a class
method. Finally, the example shows the integration of this component into a standalone
Microsoft Visual Basic application. The application accepts the magic square size as
input and displays the matrix in a ListView control box.

Note: ListView is a Windows Form control that displays a list of items with icons. You
can use a list view to create a user interface like the right pane of Windows Explorer. See
the MSDN Library for more information about Windows Form controls.

Creating the MATLAB File

To get started, create the MATLAB file mymagic.m containing the following code:

function y = mymagic(x)y = magic(x);

Using the Library Compiler App to Create and Build the Project

1 While in MATLAB, open the Library Compiler app.
2 Select Generic COM Component as the application type.
3 Add magicsquare.m to the list of exported functions.

magicsquare.m is located in the MagicDemoComp folder.

http://msdn.microsoft.com/en-us/library/ettb6e2a(v=vs.100).aspx

 Integrate Magic Square into a COM Application

2-29

4 Click the Package button.

Creating the Microsoft Visual Basic Project

Note This procedure assumes that you are using Microsoft Visual Basic 6.0.

1 Start Visual Basic.
2 In the New Project dialog box, select Installed > Templates > Other Languages

> Visual Basic > Windows Form Application as the project type and click Open.
This creates a new Visual Basic project with a blank form.

3 From the main menu, select Project > References to open the Project References
dialog box.

4 Select magicdemo 1.0 Type Library from the list of available components and
click OK.

5 Returning to the Visual Basic main menu, select Project > Add Component... to
open the Add New Item dialog box.

Creating the User Interface

After you create the project, add a series of controls to the blank form to create a form
with the following settings.

Control Type Control Name Properties Purpose

Frame Frame1 Caption = Magic Squares
Demo

Groups controls

Label Label1 Caption = Magic Square
Size

Labels the magic square edit box.

TextBox edtSize Accepts input of magic square
size.

CommandButton btnCreate Caption = Create When pressed, creates a new
magic square with current size.

ListView lstMagic GridLines = True

LabelEdit = lvwManual

View = lvwReport

Displays the magic square.

2 Programming with COM Components

2-30

When the form and controls are complete, add the following code to the form. This code
references the control and variable names listed above. If you have given different names
for any of the controls or any variable, change this code to reflect those differences.
Public Class magicvb

 Private sizeMatrix As Double 'Holds current matrix size

 Private theMagic As magicdemo.magicdemoclass 'magic object instance

 Private Sub magicvb_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 'This function is called when the form is loaded.

 'Creates a new magic class instance.

 On Error GoTo Handle_Error

 theMagic = New magicdemo.magicdemoclass

 sizeMatrix = 0

 Exit Sub

Handle_Error:

 MsgBox(Err.Description)

 End Sub

 Private Sub ShowMatrix(matrixMagic As Object)

 'This function populates the ListView with the contents of

 'y. y is assumed to contain a 2D array.

 Dim szSquare As Long

 Dim indxRow As Long

 Dim indxCol As Long

 Dim nLen As Long

 On Error GoTo Handle_Error

 'Get array size

 If IsArray(matrixMagic) Then

 szSquare = UBound(matrixMagic, 1)

 Else

 szSquare = 1

 End If

 lstMagic.Clear()

 lstMagic.Columns.Add("")

 For cIndx = 1 To szSquare

 lstMagic.Columns.Add(CStr(cIndx))

 Next

 lstMagic.View = View.Details

 For indxRow = 1 To szSquare

 Dim item As New ListViewItem(CStr(indxRow))

 For indxCol = 1 To szSquare

 item.SubItems.Add(Format(matrixMagic(indxRow, indxCol)))

 Next

 lstMagic.Items.Add(item)

 Next

 Exit Sub

Handle_Error:

 MsgBox(Err.Description)

 End Sub

 Integrate Magic Square into a COM Application

2-31

 Private Sub btnCreate_Click(sender As Object, e As EventArgs) Handles btnCreate.Click

 'This function is called when the Create button is pressed.

 'Calls the mymagic method, and displays the magic square.

 Dim matrixMagic As Object

 If sizeMatrix <= 0 Or theMagic Is Nothing Then Exit Sub

 On Error GoTo Handle_Error

 Call theMagic.mymagic(1, matrixMagic, sizeMatrix)

 Call ShowMatrix(matrixMagic)

 Exit Sub

Handle_Error:

 MsgBox(Err.Description)

 End Sub

 Private Sub edtSize_TextChanged(sender As Object, e As EventArgs) Handles edtSize.TextChanged

 'This function is called when ever the contents of the

 'Text box change. Sets the current value of Size.

 On Error Resume Next

 sizeMatrix = CDbl(edtSize.Text)

 If Err.Number > 0 Then

 sizeMatrix = 0

 End If

 End Sub

End Class

Creating the Executable in Microsoft Visual Basic

After the code is complete, create the standalone executable magic.exe:

1 Reopen the project by selecting File > Save Project from the main menu. Accept
the default name for the main form and enter magic.vbp for the project name.

2 Return to the File menu. Select File > Make magic.exe to create the finished
product.

Testing the Application

You can run the magic.exe executable as you would any other program. When the main
dialog box opens, enter a positive number in the input box and click Create. A magic
square of the input size appears.

The ListView control automatically implements scrolling if the magic square is larger
than 4-by-4.

3

How the MATLAB Compiler SDK
Product Creates COM Components

• “Overview of Internal Processes” on page 3-2
• “Component Registration” on page 3-4
• “Data Conversion” on page 3-8
• “Calling Conventions” on page 3-20

3 How the MATLAB Compiler SDK Product Creates COM Components

3-2

Overview of Internal Processes
In this section...

“Code Generation” on page 3-2
“Create Interface Definitions” on page 3-2
“C++ Compilation” on page 3-2
“Linking and Resource Binding” on page 3-3
“Registration of the DLL” on page 3-3

Code Generation

The first step in the build process generates all source code and other supporting
files needed to create the component. It also creates the main source file
(mycomponent_dll.cpp) containing the implementation of each exported function of
the DLL. The compiler additionally produces an Interface Description Language (IDL)
file (mycomponent_idl.idl), containing the specifications for the component's type
library, interface, and class, with associated GUIDs. (GUID is an acronym for Globally
Unique Identifier, a 128-bit integer guaranteed always to be unique.)

Created next are the C++ class definition and implementation files (myclass_com.hpp
and myclass_com.cpp). In addition to these source files, the compiler generates a DLL
exports file (mycomponent.def) and a resource script.

Create Interface Definitions

The second step of the build process invokes the IDL compiler on the IDL file
generated in step 1 (mycomponent_idl.idl), creating the interface header file
(mycomponent_idl.h), the interface GUID file (mycomponent_idl_i.c), and the
component type library file (mycomponent_idl.tlb). The interface header file contains
type definitions and function declarations based on the interface definition in the IDL
file. The interface GUID file contains the definitions of the GUIDs from all interfaces in
the IDL file. The component type library file contains a binary representation of all types
and objects exposed by the component.

C++ Compilation

The third step compiles all C/C++ source files generated in steps 1 and 2 into object
code. One additional file containing a set of C++ template classes (mclcomclass.h) is

 Overview of Internal Processes

3-3

included at this point. This file contains template implementations of all necessary COM
base classes, as well as error handling and registration code.

Linking and Resource Binding

The fourth step produces the finished DLL for the component. This step invokes the
linker on the object files generated in step 3 and the necessary MATLAB libraries to
produce a DLL component (mycomponent_1_0.dll). The resource compiler is then
invoked on the DLL, along with the resource script generated in step 1, to bind the type
library file generated in step 2 into the completed DLL.

Registration of the DLL

The final build step registers the DLL on the system, as described in “Component
Registration” on page 3-4.

3 How the MATLAB Compiler SDK Product Creates COM Components

3-4

Component Registration

In this section...

“Self-Registering Components” on page 3-4
“Globally Unique Identifier” on page 3-5
“Versioning” on page 3-6

Self-Registering Components

When the MATLAB Compiler SDK product creates a component, it automatically
generates a binary file called a type library. As a final step of the build, this file is bound
with the resulting DLL as a resource.

MATLAB Compiler SDK COM components are all self-registering. A self-registering
component contains all the necessary code to add or remove a full description of itself
to or from the system registry. The mwregsvr utility, distributed with theMATLAB
Runtime, registers self-registering DLLs. For example, to register a component called
mycomponent_1_0.dll, issue this command at the DOS command prompt:

mwregsvr mycomponent_1_0.dll

When mwregsvr completes the registration process, it displays a message indicating
success or failure. Similarly, the command

mwregsvr /u mycomponent_1_0.dll

unregisters the component.

A component installed onto a particular machine must be registered with mwregsvr. If
you move a component into a different folder on the same machine, you must repeat the
registration process. When deleting a component from a specific machine, first unregister
it to ensure that the registry does not retain erroneous information.

Tip The mwregsvr utility invokes a process that is similar to regsvr32.exe, except that
mwregsvr does not require interaction with a user at the console. The regsvr32.exe
process belongs to the Windows OS and is used to register dynamic link libraries and
Microsoft ActiveX® controls in the registry. This program is important for the stable and
secure running of your computer and should not be terminated. You must specify the full
path of the component when calling mwregsvr, or make the call from the folder in which

 Component Registration

3-5

the component resides. You can use regsvr32.exe as an alternative to mwregsvr to
register your library.

Globally Unique Identifier

Information is stored in the registry as keys with one or more associated named values.
The keys themselves have values of primarily two types: readable strings and GUIDs.
(GUID is an acronym for Globally Unique Identifier, a 128-bit integer guaranteed always
to be unique.)

The compiler automatically generates GUIDs for COM classes, interfaces, and type
libraries that are defined within a component at build time, and codes these keys into the
component's self-registration code.

The interface to the system registry is folder based. COM-related information is stored
under a top-level key called HKEY_CLASSES_ROOT. Under HKEY_CLASSES_ROOT are
several other keys under which the compiler writes component information.

Caution Do not delete the DLL-file in your project's src folder between builds. Doing
so causes the GUIDs to be regenerated on the subsequent build. To preserve an older
version of the DLL, register it on your system before rebuilding your project.

See the following table for a list of the keys and their definitions.

Key Definition

HKEY_CLASSES_ROOT\CLSID Information about COM classes on the
system. Each component creates a new
key under HKEY_CLASSES_ROOT\CLSID
for each of its COM classes. The key
created has a value of the GUID that
has been assigned the class and contains
several subkeys with information about
the class.

HKEY_CLASSES_ROOT\Interface Information about COM interfaces on
the system. Each component creates a
new key under HKEY_CLASSES_ROOT
\Interface for each interface it defines.

3 How the MATLAB Compiler SDK Product Creates COM Components

3-6

Key Definition

This key has the value of the GUID
assigned to the interface and contains
subkeys with information about the
interface.

HKEY_CLASSES_ROOT\TypeLib Information about type libraries on the
system. Each component creates a key
for its type library with the value of the
GUID assigned to it. Under this key a
new key is created for each version of
the type library. Therefore, new versions
of type libraries with the same name
reuse the original GUID but create a new
subkey for the new version.

HKEY_CLASSES_ROOT\<ProgID>,

HKEY_CLASSES_ROOT\<VerIndProgID>

These two keys are created for the
component's Program ID and Version
Independent Program ID. These keys are
constructed from strings of the following
forms:
component-name.class-name

component-name.class-name

version-number

These keys are useful for creating a class
instance from the component and class
names instead of the GUIDs.

Versioning

MATLAB Compiler SDK components support a simple versioning mechanism designed
to make building and deploying multiple versions of the same component easy to
implement. The version number of a component appears as part of the DLL name, as
well as part of the version-dependent ID in the system registry.

When a component is created, you can specify a version number. (The default is 1.0.)
During the development of a specific version of a component, the version number should
be kept constant. When this is done, the MATLAB Compiler SDK product, in certain
cases, reuses type library, class, and interface GUIDs for each subsequent build of the
component. This avoids the creation of an excessive number of registry keys for the same
component during multiple builds, as occurs if new GUIDs are generated for each build.

 Component Registration

3-7

When a new version number is introduced, MATLAB Compiler SDK generates
new class and interface GUIDs so that the system recognizes them as distinct from
previous versions, even if the class name is the same. Therefore, once you deploy a built
component, use a new version number for any changes made to the component. This
ensures that after you deploy the new component, it is easy to manage the two versions.

MATLAB Compiler SDK implements the versioning rules for a specific component
name, class name, and version number by querying the system registry for an existing
component with the same name:

• If an existing component has the same version, it uses the GUID of the existing
component's type library. If the name of the new class matches the previous version,
it reuses the class and interface GUIDs. If the class names do not match, it generates
new GUIDs for the new class and interface.

• If it finds an existing component with a different version, it uses the existing type
library GUID and creates a new subkey for the new version number. It generates new
GUIDs for the new class and interface.

• If it does not find an existing component of the specified name, it generates new
GUIDs for the component's type library, class, and interface.

3 How the MATLAB Compiler SDK Product Creates COM Components

3-8

Data Conversion

In this section...

“Conversion Rules” on page 3-8
“Array Formatting Flags” on page 3-17
“Data Conversion Flags” on page 3-18

Conversion Rules

This section describes the data conversion rules for COM components created with the
MATLAB Compiler SDK product. These components are dual interface COM objects that
support data types compatible with Automation.

Note: Automation (formerly called OLE Automation) is a technology that allows software
packages to expose their unique features to scripting tools and other applications.
Automation uses the Component Object Model (COM), but may be implemented
independently from other OLE features, such as in-place activation.

Caution Be aware that IIS (Internet Information Service) usually prevents most COM
automation on the basis that it may pose a security risk. Therefore, XLSREAD and other
Automation services may fail when served by IIS, leading to errors such as object
reference not set.

When a method is invoked on a MATLAB Compiler SDK component, the input
parameters are converted to MATLAB internal array format and passed to the compiled
MATLAB function. When the function exits, the output parameters are converted from
MATLAB internal array format to COM Automation types.

The COM client passes all input and output arguments in the compiled MATLAB
functions as type VARIANT. The COM VARIANT type is a union of several simple data
types. A type VARIANT variable can store a variable of any of the simple types, as well as
arrays of any of these values.

The Win32 API provides many functions for creating and manipulating VARIANTs in
C/C++, and Microsoft Visual Basic provides native language support for this type. See
the Microsoft Visual Studio documentation for definitions and API support for COM

 Data Conversion

3-9

VARIANTs. VARIANT variables are self describing and store their type code as an internal
field of the structure.

Note: This discussion of data refers to both VARIANT and Variant data types. VARIANT
is the C++ name and Variant is the corresponding data type in Visual Basic.

See VARIANT Type Codes Supported for a list of the VARIANT type codes supported by
compiler components.

See MATLAB to COM VARIANT Conversion Rules and COM VARIANT to MATLAB
Conversion Rules for conversion rules between COM VARIANTs and MATLAB arrays.

VARIANT Type Codes Supported

VARIANT Type Code
(C/C++)

C/C++ Type Variant Type Code
(Visual Basic)

Visual Basic
Type

Definition

VT_EMPTY - vbEmpty - Uninitialized VARIANT
VT_I1 char - - Signed one-byte

character
VT_UI1 unsigned char vbByte Byte Unsigned one-byte

character
VT_I2 short vbInteger Integer Signed two-byte integer
VT_UI2 unsigned

short

- - Unsigned two-byte
integer

VT_I4 long vbLong Long Signed four-byte
integer

VT_UI4 unsigned long - - Unsigned four-byte
integer

VT_R4 float vbSingle Single IEEE® four-byte
floating-point value

VT_R8 double vbDouble Double IEEE eight-byte
floating-point value

VT_CY CY+ vbCurrency Currency Currency value (64-
bit integer, scaled by
10,000)

3 How the MATLAB Compiler SDK Product Creates COM Components

3-10

VARIANT Type Code
(C/C++)

C/C++ Type Variant Type Code
(Visual Basic)

Visual Basic
Type

Definition

VT_BSTR BSTR+ vbString String String value

VT_ERROR SCODE+ vbError - HRESULT (signed
four-byte integer
representing a COM
error code)

VT_DATE DATE+ vbDate Date Eight-byte floating-
point value
representing date and
time

VT_INT int - - Signed integer;
equivalent to type int

VT_UINT unsigned int - - Unsigned integer;
equivalent to type
unsigned int

VT_DECIMAL DECIMAL+ vbDecimal - 96-bit (12-byte)
unsigned integer,
scaled by a variable
power of 10

VT_BOOL VARIANT_BOOL+ vbBoolean Boolean Two-byte Boolean
value (0xFFFF = True;
0x0000 = False)

VT_DISPATCH IDispatch* vbObject Object IDispatch* pointer to
an object

VT_VARIANT VARIANT+ vbVariant Variant VARIANT (can only be
specified if combined
with VT_BYREF or
VT_ARRAY)

<anything>|VT_ARRAY Bitwise combine
VT_ARRAY with any
basic type to declare as
an array

<anything>|VT_BYREF Bitwise combine
VT_BYREF with any

 Data Conversion

3-11

VARIANT Type Code
(C/C++)

C/C++ Type Variant Type Code
(Visual Basic)

Visual Basic
Type

Definition

basic type to declare as
a reference to a value

+ Denotes Windows specific type. Not part of standard C/C++.

MATLAB to COM VARIANT Conversion Rules

MATLAB Data Type VARIANT Type for Scalar
Data

VARIANT Type for Array
Data

Comments

cell A 1-by-1 cell array
converts to a single
VARIANT with a type
conforming to the
conversion rule for the
MATLAB data type of
the cell contents.

A multidimensional
cell array converts
to a VARIANT of
type VT_VARIANT|
VT_ARRAY with the
type of each array
member conforming to
the conversion rule for
the MATLAB data type
of the corresponding cell.

structure VT_DISPATCH VT_DISPATCH A MATLAB struct
array is converted to
an MWStruct object.
(See “Class MWStruct”
on page 5-18.) This
object is passed as a
VT_DISPATCH type.

char A 1-by-1 char matrix
converts to a VARIANT
of type VT_BSTR with
string length = 1.

A 1-by-L char matrix
is assumed to represent
a string of length Lin
MATLAB. This case
converts to a VARIANT
of type VT_BSTR with
a string length = L.
char matrices of more
than one row, or of a
higher dimensionality
convert to a VARIANT

Arrays of strings are
not supported as char
matrices. To pass an
array of strings, use a
cell array of 1-by-L char
matrices.

3 How the MATLAB Compiler SDK Product Creates COM Components

3-12

MATLAB Data Type VARIANT Type for Scalar
Data

VARIANT Type for Array
Data

Comments

of type VT_BSTR|
VT_ARRAY. Each string
in the converted array
is of length 1 and
corresponds to each
character in the original
matrix.

sparse VT_DISPATCH VT_DISPATCH A MATLAB sparse
array is converted to
an MWSparse object.
(See “Class MWSparse”
on page 5-30.) This
object is passed as a
VT_DISPATCH type.

double A real 1-by-1 double
matrix converts to
a VARIANT of type
VT_R8. A complex 1-by-1
double matrix converts
to a VARIANT of type
VT_DISPATCH.

A real multidimensional
double matrix converts
to a VARIANT of type
VT_R8|VT_ARRAY.
A complex
multidimensional
double matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class. See
“Class MWComplex” on
page 5-27

single A real 1-by-1 single
matrix converts to
a VARIANT of type
VT_R4. A complex 1-by-1
single matrix converts
to a VARIANT of type
VT_DISPATCH.

A real multidimensional
single matrix converts
to a VARIANT of type
VT_R4|VT_ARRAY.
A complex
multidimensional
single matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class.

int8 A real 1-by-1 int8
matrix converts to
a VARIANT of type
VT_I1. A complex 1-by-1

A real multidimensional
int8 matrix converts
to a VARIANT of type
VT_I1|VT_ARRAY.

Complex arrays are
passed to and from
compiled MATLAB

 Data Conversion

3-13

MATLAB Data Type VARIANT Type for Scalar
Data

VARIANT Type for Array
Data

Comments

int8 matrix converts
to a VARIANT of type
VT_DISPATCH.

A complex
multidimensional
int8 matrix converts
to a VARIANT of type
VT_DISPATCH.

functions using the
MWComplex class.

uint8 A real 1-by-1 uint8
matrix converts to
a VARIANT of type
VT_UI1. A complex
1-by-1 uint8 matrix
converts to a VARIANT of
type VT_DISPATCH.

A real multidimensional
uint8 matrix
converts to a VARIANT
of type VT_UI1|
VT_ARRAY.A complex
multidimensional
uint8 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class.

int16 A real 1-by-1 int16
matrix converts to
a VARIANT of type
VT_I2. A complex 1-by-1
int16 matrix converts
to a VARIANT of type
VT_DISPATCH.

A real multidimensional
int16 matrix
converts to a VARIANT
of type VT_I2|
VT_ARRAY. A complex
multidimensional
int16 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class.

uint16 A real 1-by-1 uint16
matrix converts to
a VARIANT of type
VT_UI2. A complex 1-
by-1 uint16 matrix
converts to a VARIANT of
type VT_DISPATCH.

A real multidimensional
uint16 matrix
converts to a VARIANT
of type VT_UI2|
VT_ARRAY. A complex
multidimensional
uint16 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class.

int32 A 1-by-1 int32 matrix
converts to a VARIANT of
type VT_I4. A complex

A multidimensional
int32 matrix
converts to a VARIANT

Complex arrays are
passed to and from
compiled MATLAB

3 How the MATLAB Compiler SDK Product Creates COM Components

3-14

MATLAB Data Type VARIANT Type for Scalar
Data

VARIANT Type for Array
Data

Comments

1-by-1 int32 matrix
converts to a VARIANT of
type VT_DISPATCH.

of type VT_I4|
VT_ARRAY. A complex
multidimensional
int32 matrix converts
to a VARIANT of type
VT_DISPATCH.

functions using the
MWComplex class.

uint32 A 1-by-1 uint32 matrix
converts to a VARIANT of
type VT_UI4. A complex
1-by-1 uint32 matrix
converts to a VARIANT of
type VT_DISPATCH.

A multidimensional
uint32 matrix
converts to a VARIANT
of type VT_UI4|
VT_ARRAY. A complex
multidimensional
uint32 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled MATLAB
functions using the
MWComplex class.

Function handle VT_EMPTY VT_EMPTY Not supported
Java class VT_EMPTY VT_EMPTY Not supported
User class VT_EMPTY VT_EMPTY Not supported
logical VT_Bool VT_Bool|VT_ARRAY

COM VARIANT to MATLAB Conversion Rules

VARIANT Type MATLAB Data Type (Scalar or Array
Data)

Comments

VT_EMPTY N/A Empty array created.
VT_I1 int8

VT_UI1 uint8

VT_I2 int16

VT_UI2 uint16

VT_I4 int32

VT_UI4 uint32

VT_R4 single

 Data Conversion

3-15

VARIANT Type MATLAB Data Type (Scalar or Array
Data)

Comments

VT_R8 double

VT_CY double

VT_BSTR char A VARIANT of type VT_BSTR
converts to a 1-by-L MATLAB
char array, where L = the length
of the string to be converted.
A VARIANT of type VT_BSTR|
VT_ARRAY converts to a MATLAB
cell array of 1-by-L char arrays.

VT_ERROR int32

VT_DATE double VARIANT dates are stored as
doubles starting at midnight
Dec. 31, 1899. MATLAB dates
are stored as doubles starting
at 0/0/00 00:00:00. Therefore,
a VARIANT date of 0.0 maps
to a MATLAB numeric date
of 693960.0. VARIANT dates
are converted to MATLAB
double types and incremented by
693960.0.
VARIANT dates can be optionally
converted to strings. See “Data
Conversion Flags” on page
3-18 for more information on
type coercion.

VT_INT int32

VT_UINT uint32

VT_DECIMAL double

VT_BOOL logical

VT_DISPATCH Varies IDispatch* pointers are treated
within the context of what
they point to. Objects must be
supported types with known

3 How the MATLAB Compiler SDK Product Creates COM Components

3-16

VARIANT Type MATLAB Data Type (Scalar or Array
Data)

Comments

data extraction and conversion
rules, or expose a generic Value
property that points to a single
VARIANT type. Data extracted
from an object is converted based
on the rules for the particular
VARIANT obtained.

Currently, support exists for
Excel Range objects as well as
the types MWStruct, MWComplex,
MWSparse, and MWArg. See
“Reference Utility Classes” on
page 5-2 for information
on the types to use with COM
components.

anything|VT_BYREF Varies Pointers to any of the basic types
are processed according to the
rules for what they point to.
The resulting MATLAB array
contains a deep copy of the
values.

anything|VT_ARRAY Varies Multidimensional
VARIANT arrays convert to
multidimensional MATLAB
arrays, each element converted
according to the rules for the
basic types. Multidimensional
VARIANT arrays of type
VT_VARIANT|VT_ARRAY convert
to multidimensional cell arrays,
each cell converted according to
the rules for that specific type.

 Data Conversion

3-17

Array Formatting Flags

The components have flags that control how array data is formatted in both directions.
Generally, you should develop client code that matches the intended inputs and outputs
of the MATLAB functions with the corresponding methods on the compiled COM objects,
in accordance with the rules listed in MATLAB to COM VARIANT Conversion Rules and
COM VARIANT to MATLAB Conversion Rules. In some cases this is not possible, for
example, when existing MATLAB code is used in conjunction with a third-party product
like Excel.

The following table shows the array formatting flags.

Array Formatting Flags

Flag Description

InputArrayFormat Defines the array formatting rule used on input arrays.
An input array is a VARIANT array, created by the client,
sent as an input parameter to a method call on a compiled
COM object.
Valid values for this flag are mwArrayFormatAsIs,
mwArrayFormatMatrix, and mwArrayFormatCell.

mwArrayFormatAsIs passes the array unchanged.

mwArrayFormatMatrix (default) formats all arrays as
matrices. When the input VARIANT is of type VT_ARRAY|
type, where type is any numeric type, this flag has no
effect. When the input VARIANT is of type VT_VARIANT|
VT_ARRAY, VARIANTs in the array are examined. If they
are single-valued and homogeneous in type, a MATLAB
matrix of the appropriate type is produced instead of a cell
array.

mwArrayFormatCell interprets all arrays as MATLAB
cell arrays.

InputArrayIndFlag Sets the input array indirection level used with the
InputArrayFormat flag (applicable only to nested arrays,
i.e., VARIANT arrays of VARIANTs, which themselves
are arrays). The default value for this flag is zero, which
applies the InputArrayFormat flag to the outermost

3 How the MATLAB Compiler SDK Product Creates COM Components

3-18

Flag Description

array. When this flag is greater than zero, e.g., equal to
N, the formatting rule attempts to apply itself to the Nth
level of nesting.

OutputArrayFormat Defines the array formatting rule used on output arrays.
An output array is a MATLAB array, created by the
compiled COM object, sent as an output parameter
from a method call to the client. The values for this flag,
mwArrayFormatAsIs, mwArrayFormatMatrix, and
mwArrayFormatCell, cause the same behavior as the
corresponding InputArrayFormat flag values.

OutputArrayIndFlag (Applies to nested cell arrays only.) Output array
indirection level used with the OutputArrayFormat flag.
This flag works exactly like InputArrayIndFlag.

AutoResizeOutput (Applies to Excel ranges only.) When the target output
from a method call is a range of cells in an Excel
worksheet and the output array size and shape is not
known at the time of the call, set this flag to True to resize
each Excel range to fit the output array.

TransposeOutput Set this flag to True to transpose the output arguments.
Useful when calling a component from Excel where the
MATLAB function returns outputs as row vectors, and you
want the data in columns.

Data Conversion Flags

MATLAB Compiler SDK components contain flags to control the conversion of certain
VARIANT types to MATLAB types. These flags are as follows:

• “CoerceNumericToType” on page 3-18
• “InputDateFormat” on page 3-19
• “OutputAsDate As Boolean” on page 3-19
• “DateBias As Long” on page 3-19

CoerceNumericToType

This flag tells the data converter to convert all numeric VARIANT data to one specific
MATLAB type. VARIANT type codes affected by this flag are VT_I1, VT_UI1, VT_I2,

 Data Conversion

3-19

VT_UI2, VT_I4, VT_UI4, VT_R4, VT_R8, VT_CY, VT_DECIMAL, VT_INT, VT_UINT,
VT_ERROR, VT_BOOL, and VT_DATE. Valid values for this flag are mwTypeDefault,
mwTypeChar, mwTypeDouble, mwTypeSingle, mwTypeLogical, mwTypeInt8,
mwTypeUint8, mwTypeInt16, mwTypeUint16, mwTypeInt32, and mwTypeUint32.

The default for this flag, mwTypeDefault, converts numeric data according to the rules
listed in “Data Conversion” on page 3-8.

InputDateFormat

This flag tells the data converter how to convert VARIANT dates to MATLAB dates. Valid
values for this flag are mwDateFormatNumeric (default) and mwDateFormatString.
The default converts VARIANT dates according to the rule listed in VARIANT Type
Codes Supported . The mwDateFormatString flag converts a VARIANT date to its string
representation. This flag only affects VARIANT type code VT_DATE.

OutputAsDate As Boolean

This flag instructs the data converter to process an output argument as a date. By
default, numeric dates that are output parameters from compiled MATLAB functions
are passed as Doubles that need to be decremented by the COM date bias (693960) as
well as coerced to COM dates. Set this flag to True to convert all output values of type
Double.

DateBias As Long

This flag sets the date bias for performing COM to MATLAB numeric date conversions.
The default value of this property is 693960, which represents the difference between the
COM Date type and MATLAB numeric dates. This flag allows existing MATLAB code
that already performs the increment of numeric dates by 693960 to be used unchanged
with the components. To process dates with such code, set this property to 0.

3 How the MATLAB Compiler SDK Product Creates COM Components

3-20

Calling Conventions

In this section...

“Producing a COM Class” on page 3-20
“IDL Mapping” on page 3-21
“Microsoft Visual Basic Mapping” on page 3-22

Producing a COM Class

Producing a COM class requires the generation of

• A class definition file in Interface Description Language (IDL)
• One or more associated C++ class definition/implementation files

The MATLAB Compiler SDK product automatically produces the necessary IDL and C/C
++ code to build each COM class in the component. This process is generally transparent
to you when you use the compiler to generate a COM component, and to users of the
COM component when they program with it.

For information about IDL and C++ coding rules for building COM objects and for
mappings to other languages, see articles in the MSDN Library.

The following table shows the mapping of a generic MATLAB function to IDL code and to
Microsoft Visual Basic.

http://msdn.microsoft.com/library/

 Calling Conventions

3-21

Code Sample

Generic
MATLAB
Code

function [Y1, Y2, ..., varargout] = foo(X1, X2, ..., varargin)

IDL Code HRESULT foo([in] long nargout,

 [in,out] VARIANT* Y1,

 [in,out] VARIANT* Y2,

 .

 .

 [in,out] VARIANT* varargout,

 [in] VARIANT X1,

 [in] VARIANT X2,

 .

 .

 [in] VARIANT varargin);

Visual Basic
Code

Sub foo(nargout As Long, _

 Y1 As Variant, _

 Y2 As Variant, _

 .

 .

 varargout As Variant, _

 X1 As Variant, _

 X2 As Variant, _

 .

 .

 varargin As Variant)

IDL Mapping

The IDL function definition is generated by producing a function with the same name as
the original MATLAB function and an argument list containing all inputs and outputs of
the original plus one additional parameter, nargout.

When present, the nargout parameter is an [in] parameter of type long. It is always
the first argument in the list. This parameter allows correct passage of the MATLAB
nargout parameter to the compiled MATLAB code. The nargout parameter is not
produced if you encapsulate a MATLAB function containing no outputs.

Following the nargout parameter, the outputs are listed in the order they appear on the
left side of the MATLAB function, and are tagged as [in,out], meaning that they are
passed in both directions.

3 How the MATLAB Compiler SDK Product Creates COM Components

3-22

The function inputs are listed next, appearing in the same order as they do on the right
side of the original function. All inputs are tagged as [in] parameters.

When present, the optional varargin/varargout parameters are always listed as
the last input parameters and the last output parameters. All parameters other than
nargout are passed as COM VARIANT types. “Data Conversion” on page 3-8 lists the
rules for conversion between MATLAB arrays and COM VARIANTs.

Microsoft Visual Basic Mapping

Microsoft Visual Basic provides native support for COM Variants with the Variant
type, as well as implicit conversions for all Visual Basic primitive types to and from
Variants. In general, arrays/scalars of any Visual Basic primitive type, as well as
arrays/scalars of Variant types, can be passed as arguments.

MATLAB Compiler SDK COM components also provide direct support for the Excel
Range object, used by Visual Basic for Applications to represent a range of cells in an
Excel worksheet.

See the Visual Basic for Applications documentation included with Microsoft Excel for
more information on Visual Basic data types.

See the MSDN Library for more information about Visual Basic and about Excel Range
manipulation.

http://msdn.microsoft.com/library/

4

Distribute Integrated COM
Applications

• “Package COM Applications” on page 4-2
• “About the MATLAB Runtime” on page 4-3
• “Download the MATLAB Runtime Installer” on page 4-5
• “Install the MATLAB Runtime” on page 4-6
• “MATLAB and MATLAB Runtime on Same Machine” on page 4-10
• “Multiple MATLAB Runtime Versions on Single Machine” on page 4-11
• “Uninstall MATLAB Runtime” on page 4-12

4 Distribute Integrated COM Applications

4-2

Package COM Applications

1 Gather and package the following files for installation on end user computers:

• MATLAB Runtime installer

See “Download the MATLAB Runtime Installer” on page 4-5.
• MATLAB generated COM component
• mwcomutil.dll

• Executable for the application
2 Include directions for installing the MATLAB Runtime.

See “Install the MATLAB Runtime” on page 4-6.
3 Include directions for registering mwcomutil.dll and the generated component,

 About the MATLAB Runtime

4-3

About the MATLAB Runtime

In this section...

“How is the MATLAB Runtime Different from MATLAB?” on page 4-3
“Performance Considerations and the MATLAB Runtime” on page 4-4

The MATLAB Runtime is a standalone set of shared libraries, MATLAB code, and other
files that enables the execution of MATLAB files on computers without an installed
version of MATLAB. Applications that use artifacts built with MATLAB Compiler SDK
require access to an appropriate version of the MATLAB Runtime to run.

End-users of compiled artifacts without access to MATLAB must install the MATLAB
Runtime on their computers or know the location of a network-installed MATLAB
Runtime. The installers generated by the compiler apps may include the MATLAB
Runtime installer. If you compiled your artifact using mcc, you should direct your
end-users to download the MATLAB Runtime installer from the website http://
www.mathworks.com/products/compiler/mcr.

See “Install the MATLAB Runtime” on page 4-6 for more information.

How is the MATLAB Runtime Different from MATLAB?

The MATLAB Runtime differs from MATLAB in several important ways:

• In the MATLAB Runtime, MATLAB files are encrypted and imutable.
• MATLAB has a desktop graphical interface. The MATLAB Runtime has all the

MATLAB functionality without the graphical interface.
• The MATLAB Runtime is version-specific. You must run your applications with the

version of the MATLAB Runtime associated with the version of MATLAB Compiler
SDK with which it was created. For example, if you compiled an application using
version 4.10 (R2009a) of MATLAB Compiler, users who do not have MATLAB
installed must have version 7.10 of the MATLAB Runtime installed. Use mcrversion
to return the version number of the MATLAB Runtime.

• The MATLAB paths in a MATLAB Runtime instance are fixed and cannot be
changed. To change them, you must first customize them within MATLAB.

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

4 Distribute Integrated COM Applications

4-4

Performance Considerations and the MATLAB Runtime

MATLAB Compiler SDK was designed to work with a large range of applications that
use the MATLAB programming language. Because of this, run-time libraries are large.

Since the MATLAB Runtime technology provides full support for the MATLAB language,
including the Java programming language, starting a compiled application takes
approximately the same amount of time as starting MATLAB. The amount of resources
consumed by the MATLAB Runtime is necessary in order to retain the power and
functionality of a full version of MATLAB.

Calls into the MATLAB Runtime are serialized so calls into the MATLAB Runtime are
threadsafe. This can impact performance.

 Download the MATLAB Runtime Installer

4-5

Download the MATLAB Runtime Installer

Download the MATLAB Runtime from the website at http://www.mathworks.com/
products/compiler/mcr.

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

4 Distribute Integrated COM Applications

4-6

Install the MATLAB Runtime

In this section...

“Install the MATLAB Runtime Interactively” on page 4-6
“Install the MATLAB Runtime Non-Interactively” on page 4-7

Install the MATLAB Runtime Interactively

To install the MATLAB Runtime:

1 Start the MATLAB Runtime installer.

Computer Steps

Windows Double-click the compiled MATLAB code package self-extracting
archive file, typically named my_program_pkg.exe, where
my_program is the name of the MATLAB code. This extracts
the MATLAB Runtime installer from the archive, along with
all the files that make up the MATLAB Runtime. Once all the
files have been extracted, the MATLAB Runtime installer starts
automatically.

Linux®

Mac

Extract the contents of the compiled package, which is a Zip
file on Linux systems, typically named, my_program_pkg.zip,
where my_program is the name of the compiled MATLAB code.
Use the unzip command to extract the files from the package.

unzip MCRInstaller.zip

Run the MATLAB Runtime installer script, from the directory
where you unzipped the package file, by entering:

./install

For example, if you unzipped the package and MATLAB
Runtime installer in \home\USER, you run the ./install from
\home\USER.

Note: On Mac systems, you may need to enter an administrator
username and password after you run ./install.

 Install the MATLAB Runtime

4-7

2 When the MATLAB Runtime installer starts, it displays a dialog box. Read the
information and then click Next to proceed with the installation.

3 Specify the folder in which you want to install the MATLAB Runtime in the Folder
Selection dialog box.

Note: On Windows systems, you can have multiple versions of the MATLAB
Runtime on your computer but only one installation for any particular version. If
you already have an existing installation, the MATLAB Runtime installer does not
display the Folder Selection dialog box because you can only overwrite the existing
installation in the same folder.

4 Confirm your choices and click Next.

The MATLAB Runtime installer starts copying files into the installation folder.
5 On Linux and Mac systems, after copying files to your disk, the MATLAB Runtime

installer displays the Product Configuration Notes dialog box. This dialog box
contains information necessary for setting your path environment variables. Copy
the path information from this dialog box and then click Next.

6 Click Finish to exit the installer.

Install the MATLAB Runtime Non-Interactively

To install the MATLAB Runtime without having to interact with the installer dialog
boxes, use one of the MATLAB Runtime installer’s non-interactive modes:

• silent—the installer runs as a background task and does not display any dialog boxes
• automated—the installer displays the dialog boxes but does not wait for user

interaction

When run in silent or automated mode, the MATLAB Runtime installer uses default
values for installation options. You can override these defaults by using MATLAB
Runtime installer command-line options or an installer control file.

Note: When running in silent or automated mode, the installer overwrites the default
installation location.

Running the Installer in Silent Mode

To install the MATLAB Runtime in silent mode:

4 Distribute Integrated COM Applications

4-8

1 Extract the contents of the MATLAB Runtime installer file to a temporary folder,
called $temp in this documentation.

Note: On Windows systems, manually extract the contents of the installer file.
2 Run the MATLAB Runtime installer, specifying the -mode option and -

agreeToLicense yes on the command line.

Note: On most platforms, the installer is located at the root of the folder into which
the archive was extracted. On Windows 64, the installer is located in the archives
bin folder.

Platform Command

Windows setup -mode silent -

agreeToLicense yes

Linux ./install -mode silent -

agreeToLicense yes

Mac OS X ./install -mode silent -

agreeToLicense yes

Note: If you do not include the -agreeToLicense yes the installer will not install
the MATLAB Runtime.

3 View a log of the installation.

On Windows systems, the MATLAB Runtime installer creates a log file, named
mathworks_username.log, where username is your Windows log-in name, in the
location defined by your TEMP environment variable.

On Linux and Mac systems, the MATLAB Runtime installer displays the log
information at the command prompt, unless you redirect it to a file.

Customizing a Non-Interactive Installation

When run in one of the non-interactive modes, the installer will use the default values
unless told to do otherwise. Like the MATLAB installer, the MATLAB Runtime
installer accepts a number of command line options that modify the default installation
properties.

 Install the MATLAB Runtime

4-9

Option Description

-destinationFolder Specifies where the MATLAB Runtime will
be installed.

-outputFile Specifies where the installation log file is
written.

-automatedModeTimeout Specifies how long, in milliseconds, that
the dialog boxes are displayed when run in
automatic mode.

-inputFile Specifies an installer control file with the
values for all of the above options.

Note: The MATLAB Runtime installer archive includes an example installer control file
called installer_input.txt. This file contains all of the options available for a full
MATLAB installation. Only the options listed in this section are valid for the MATLAB
Runtime installer.

4 Distribute Integrated COM Applications

4-10

MATLAB and MATLAB Runtime on Same Machine

You do not need to install MATLAB Runtime on your machine if your machine has
MATLAB installed. The version of MATLAB should be the same as the version of
MATLAB that was used to create the compiled MATLAB code.

You can, however, install the MATLAB Runtime for debugging purposes.

Modifying the Path

If you install MATLAB Runtime on a machine that already has MATLAB on it, you must
adjust the library path according to your needs.

• Windows

To run deployed MATLAB code against MATLAB Runtime install,
mcr_root\ver\runtime\win32|win64 must appear on your system path before
matlabroot\runtime\win32|win64.

If mcr_root\ver\runtime\arch appears first on the compiled application path, the
application uses the files in the MATLAB Runtime install area.

If matlabroot\runtime\arch appears first on the compiled application path, the
application uses the files in the MATLAB installation area.

• UNIX®

To run deployed MATLAB code against MATLAB Runtime on Linux, Linux x86-64, or
the <mcr_root>/runtime/<arch> folder must appear on your LD_LIBRARY_PATH
before matlabroot/runtime/<arch>.

To run deployed MATLAB code on Mac OS X, the <mcr_root>/runtime folder must
appear on your DYLD_LIBRARY_PATH before matlabroot/runtime/<arch>.

To run MATLAB on Mac OS X or Intel® Mac, matlabroot/runtime/<arch> must
appear on your DYLD_LIBRARY_PATH before the <mcr_root>/bin folder.

 Multiple MATLAB Runtime Versions on Single Machine

4-11

Multiple MATLAB Runtime Versions on Single Machine

MCRInstaller supports the installation of multiple versions of the MATLAB Runtime
on a target machine. This allows applications compiled with different versions of the
MATLAB Runtime to execute side by side on the same machine.

If you do not want multiple MATLAB Runtime versions on the target machine, you
can remove the unwanted ones. On Windows, run Add or Remove Programs from
the Control Panel to remove any of the previous versions. On UNIX, you manually
delete the unwanted MATLAB Runtime. You can remove unwanted versions before or
after installation of a more recent version of the MATLAB Runtime, as versions can be
installed or removed in any order.

4 Distribute Integrated COM Applications

4-12

Uninstall MATLAB Runtime

The method you use to uninstall MATLAB Runtime from your computer varies
depending on the type of computer.

Windows

1 Start the uninstaller.

From the Windows Start menu, search for the Add or Remove Programs control
panel, and double-click MATLAB Runtime in the list.

You can also launch the MATLAB Runtime uninstaller from the
mcr_root\uninstall\bin\arch folder, where mcr_root is your MATLAB
Runtime installation folder and arch is an architecture-specific folder, such as
win64.

2 Select the MATLAB Runtime from the list of products in the Uninstall Products
dialog box and

3 Click Next.
4 Click Finish.

Linux

1 Exit the application.
2 Enter this command at the Linux prompt:

rm -rf mcr_root

where mcr_root represents the name of your top-level MATLAB installation folder.

Mac

• Exit the application.
• Navigate to your MATLAB Runtime installation folder. For example, the installation

folder might be named MATLAB_Compiler_Runtime.app in your Applications folder.
• Drag your MATLAB Runtime installation folder to the trash, and then select Empty

Trash from the Finder menu.

5

Utility Library for Microsoft COM
Components

• “Reference Utility Classes” on page 5-2
• “Class MWUtil” on page 5-3
• “Class MWFlags” on page 5-12
• “Class MWStruct” on page 5-18
• “Class MWField” on page 5-25
• “Class MWComplex” on page 5-27
• “Class MWSparse” on page 5-30
• “Class MWArg” on page 5-34
• “Enum mwArrayFormat” on page 5-36
• “Enum mwDataType” on page 5-37
• “Enum mwDateFormat” on page 5-38

5 Utility Library for Microsoft COM Components

5-2

Reference Utility Classes

This section describes the MWComUtil library. This library is freely distributable and
includes several functions used in array processing, as well as type definitions used
in data conversion. This library is contained in the file mwcomutil.dll. It must be
registered once on each machine that uses Microsoft COM components created by
MATLAB Compiler or MATLAB Compiler SDK.

Register the MWComUtil library at the DOS command prompt with the command:

mwregsvr mwcomutil.dll

The MWComUtil library includes seven classes and three enumerated types. Before using
these types, you must make explicit references to the MWComUtil type libraries in the
Microsoft Visual Basic IDE.

Note: You must specify the full path of the component when calling mwregsvr, or make
the call from the folder in which the component resides.

 Class MWUtil

5-3

Class MWUtil

The MWUtil class contains a set of static utility methods used in array processing and
application initialization. This class is implemented internally as a singleton (only one
global instance of this class per instance of Microsoft Excel). It is most efficient to declare
one variable of this type in global scope within each module that uses it. The methods of
MWUtil are:

In this section...

“Sub MWInitApplication(pApp As Object)” on page 5-3
“Sub MWInitApplicationWithMCROptions(pApp As Object, [mcrOptionList])” on page
5-5
“Function IsMCRJVMEnabled() As Boolean” on page 5-6
“Function IsMCRInitialized() As Boolean” on page 5-6
“Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])” on page 5-7
“Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean = False],
[pVar0], [pVar1], ..., [pVar31])” on page 5-8
“Sub MWDate2VariantDate(pVar)” on page 5-10

The function prototypes use Visual Basic syntax.

Sub MWInitApplication(pApp As Object)

Initializes the library with the current instance of Microsoft Excel.

Parameters

Argument Type Description

pApp Object A valid reference to the
current Excel application

Return Value

None.

5 Utility Library for Microsoft COM Components

5-4

Remarks

This function must be called once for each session of Excel that uses COM components
created by MATLAB Compiler. An error is generated if a method call is made to a
member class of any MATLAB Compiler SDK COM component, and the library has not
been initialized.

Example

This Visual Basic sample initializes the MWComUtil library with the current instance of
Excel. A global variable of type Object named MCLUtil holds an instance of the MWUtil
class, and another global variable of type Boolean named bModuleInitialized stores
the status of the initialization process. The private subroutine InitModule() creates
an instance of the MWComUtil class and calls the MWInitApplication method with an
argument of Application. Once this function succeeds, all subsequent calls exit without
recreating the object.

Dim MCLUtil As Object

Dim bModuleInitialized As Boolean

Private Sub InitModule()

 If Not bModuleInitialized Then

 On Error GoTo Handle_Error

 If MCLUtil Is Nothing Then

 Set MCLUtil = CreateObject("MWComUtil.MWUtil")

 End If

 Call MCLUtil.MWInitApplication(Application)

 bModuleInitialized = True

 Exit Sub

Handle_Error:

 bModuleInitialized = False

 End If

End Sub

Note: If you are developing concurrently with multiple versions of MATLAB and
MWComUtil.dll, for example, using this syntax:

Set MCLUtil = CreateObject("MWComUtil.MWUtil")

requires you to recompile your COM modules every time you upgrade. To avoid this,
make your call to the MWUtil module version-specific, for example:

Set MCLUtil = CreateObject("MWComUtil.MWUtilx.x")

where x.x is the specific version number.

 Class MWUtil

5-5

Sub MWInitApplicationWithMCROptions(pApp As Object, [mcrOptionList])

Start MATLAB Runtime with MATLAB Runtime options. Similar to
mclInitializeApplication.

Parameters

Argument Type Description

pApp Object A valid reference only
when called from an Excel
application

Non Excel COM clients pass
in Empty.

Return Value

None.

Remarks

Call this function to pass in MATLAB Runtime options (nojvm, logfile, etc.). Call this
function once per process.

Example

This Visual Basic sample initializes the MWComUtil library with the current instance of
Excel. A global variable of type Object named MCLUtil holds an instance of the MWUtil
class, and another global variable of type Boolean named bModuleInitialized stores
the status of the initialization process. The private subroutine InitModule() creates an
instance of the MWComUtil class and calls the MWInitApplicationWithMCROptions
method with an argument of Application and a string array that contains the options.
Once this function succeeds, all subsequent calls exit without recreating the object. When
this function successfully executes, the MATLAB Runtime starts up with no JVM and a
logfile named logfile.txt.

Dim MCLUtil As Object

Dim bModuleInitialized As Boolean

Private Sub InitModule()

 If Not bModuleInitialized Then

 On Error GoTo Handle_Error

5 Utility Library for Microsoft COM Components

5-6

 If MCLUtil Is Nothing Then

 Set MCLUtil = CreateObject("MWComUtil.MWUtil")

 End If

 Dim mcrOptions(1 To 3) as String

 mcrOptions(1) = "-nojvm"

 mcrOptions(2) = "-logfile"

 mcrOptions(3) = "logfile.txt"

 Call MCLUtil.MWInitApplicationWithMCROptions(Application, mcrOptions)

 bModuleInitialized = True

 Exit Sub

Handle_Error:

 bModuleInitialized = False

 End If

End Sub

Note: If you are not using Excel, pass in Empty instead of Application to
MWInitApplicationWithMCROptions.

Function IsMCRJVMEnabled() As Boolean

Returns true if MATLAB Runtime is launched with JVM; otherwise returns false.

Parameters

None.

Return Value

Boolean

Function IsMCRInitialized() As Boolean

Returns true if MATLAB Runtime is initialized; otherwise returns true

Parameters

None.

Return Value

Boolean

 Class MWUtil

5-7

Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])

Packs a variable length list of Variant arguments into a single Variant array. This
function is typically used for creating a varargin cell from a list of separate inputs.
Each input in the list is added to the array only if it is not empty or missing. (In Visual
Basic, a missing parameter is denoted by a Variant type of vbError with a value of
&H80020004.)

Parameters

Argument Type Description

pVarArg Variant Receives the resulting array
[Var0], [Var1], ... Variant Optional list of Variants to

pack into the array. From
0 to 32 arguments can be
passed.

Return Value

None.

Remarks

This function always frees the contents of pVarArg before processing the list.

Example

This example uses MWPack in a formula function to produce a varargin cell to pass as
an input parameter to a method compiled from a MATLAB function with the signature

function y = mysum(varargin)

 y = sum([varargin{:}]);

The function returns the sum of the elements in varargin. Assume that this function
is a method of a class named myclass that is included in a component named
mycomponent with a version of 1.0. The Visual Basic function allows up to 10 inputs,
and returns the result y. If an error occurs, the function returns the error string. This
function assumes that MWInitApplication has been previously called.

Function mysum(Optional V0 As Variant, _

5 Utility Library for Microsoft COM Components

5-8

 Optional V1 As Variant, _

 Optional V2 As Variant, _

 Optional V3 As Variant, _

 Optional V4 As Variant, _

 Optional V5 As Variant, _

 Optional V6 As Variant, _

 Optional V7 As Variant, _

 Optional V8 As Variant, _

 Optional V9 As Variant) As Variant

Dim y As Variant

Dim varargin As Variant

Dim aClass As Object

Dim aUtil As Object

 On Error Goto Handle_Error

 Set aClass = CreateObject("mycomponent.myclass.1_0")

 Set aUtil = CreateObject("MWComUtil.MWUtil")

 Call aUtil.MWPack(varargin,V0,V1,V2,V3,V4,V5,V6,V7,V8,V9)

 Call aClass.mysum(1, y, varargin)

 mysum = y

 Exit Function

Handle_Error:

 mysum = Err.Description

End Function

Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean =
False], [pVar0], [pVar1], ..., [pVar31])

Unpacks an array of Variants into individual Variant arguments. This function
provides the reverse functionality of MWPack and is typically used to process a
varargout cell into individual Variants.

Parameters

Argument Type Description

VarArg Variant Input array of Variants to
be processed

nStartAt Long Optional starting index
(zero-based) in the array to
begin processing. Default =
0.

 Class MWUtil

5-9

Argument Type Description

bAutoResize Boolean Optional auto-resize flag. If
this flag is True, any Excel
range output arguments are
resized to fit the dimensions
of the Variant to be copied.
The resizing process is
applied relative to the upper
left corner of the supplied
range. Default = False.

[pVar0],[pVar1], ... Variant Optional list of Variants
to receive the array items
contained in VarArg. From
0 to 32 arguments can be
passed.

Return Value

None.

Remarks

This function can process a Variant array in one single call or through multiple calls
using the nStartAt parameter.

Example

This example uses MWUnpack to process a varargout cell into several Excel ranges,
while auto-resizing each range. The varargout parameter is supplied from a method
that has been compiled from the MATLAB function.

function varargout = randvectors

 for i=1:nargout

 varargout{i} = rand(i,1);

 end

This function produces a sequence of nargout random column vectors, with the length of
the ith vector equal to i. Assume that this function is included in a class named myclass
that is included in a component named mycomponent with a version of 1.0. The Visual
Basic subroutine takes no arguments and places the results into Excel columns starting

5 Utility Library for Microsoft COM Components

5-10

at A1, B1, C1, and D1. If an error occurs, a message box displays the error text. This
function assumes that MWInitApplication has been previously called.

Sub GenVectors()

 Dim aClass As Object

 Dim aUtil As Object

 Dim v As Variant

 Dim R1 As Range

 Dim R2 As Range

 Dim R3 As Range

 Dim R4 As Range

 On Error GoTo Handle_Error

 Set aClass = CreateObject("mycomponent.myclass.1_0")

 Set aUtil = CreateObject("MWComUtil.MWUtil")

 Set R1 = Range("A1")

 Set R2 = Range("B1")

 Set R3 = Range("C1")

 Set R4 = Range("D1")

 Call aClass.randvectors(4, v)

 Call aUtil.MWUnpack(v,0,True,R1,R2,R3,R4)

 Exit Sub

Handle_Error:

 MsgBox (Err.Description)

End Sub

Sub MWDate2VariantDate(pVar)

Converts output dates from MATLAB to Variant dates.

Parameters

Argument Type Description

pVar Variant Variant to be converted

Return Value

None.

Remarks

MATLAB handles dates as double-precision floating-point numbers with 0.0 representing
0/0/00 00:00:00. By default, numeric dates that are output parameters from compiled

 Class MWUtil

5-11

MATLAB functions are passed as Doubles that need to be decremented by the COM date
bias as well as coerced to COM dates. The MWDate2VariantDate method performs this
transformation and additionally converts dates in string form to COM date types.

Example

This example uses MWDate2VariantDate to process numeric dates returned from a
method compiled from the following MATLAB function.

function x = getdates(n, inc)

 y = now;

 for i=1:n

 x(i,1) = y + (i-1)*inc;

 end

This function produces an n-length column vector of numeric values representing dates
starting from the current date and time with each element incremented by inc days.
Assume that this function is included in a class named myclass that is included in a
component named mycomponent with a version of 1.0. The subroutine takes an Excel
range and a Double as inputs and places the generated dates into the supplied range.
If an error occurs, a message box displays the error text. This function assumes that
MWInitApplication has been previously called.

Sub GenDates(R As Range, inc As Double)

 Dim aClass As Object

 Dim aUtil As Object

 On Error GoTo Handle_Error

 Set aClass = CreateObject("mycomponent.myclass.1_0")

 Set aUtil = CreateObject("MWComUtil.MWUtil")

 Call aClass.getdates(1, R, R.Rows.Count, inc)

 Call aUtil.MWDate2VariantDate(R)

 Exit Sub

Handle_Error:

 MsgBox (Err.Description)

End Sub

5 Utility Library for Microsoft COM Components

5-12

Class MWFlags

The MWFlags class contains a set of array formatting and data conversion flags (See
“Data Conversion Rules” for more information on conversion between MATLAB and
COM Automation types.) All MATLAB Compiler SDK COM components contain a
reference to an MWFlags object that can modify data conversion rules at the object level.
This class contains these properties and method:

In this section...

“Property ArrayFormatFlags As MWArrayFormatFlags” on page 5-12
“Property DataConversionFlags As MWDataConversionFlags” on page 5-15
“Sub Clone(ppFlags As MWFlags)” on page 5-17

Property ArrayFormatFlags As MWArrayFormatFlags

The ArrayFormatFlags property controls array formatting (as a matrix or a cell array)
and the application of these rules to nested arrays. The MWArrayFormatFlags class is a
noncreatable class accessed through an MWFlags class instance. This class contains six
properties:

• “Property InputArrayFormat As mwArrayFormat” on page 5-12
• “Property InputArrayIndFlag As Long” on page 5-13
• “Property OutputArrayFormat As mwArrayFormat” on page 5-13
• “Property OutputArrayIndFlag As Long” on page 5-14
• “Property AutoResizeOutput As Boolean” on page 5-14
• “Property TransposeOutput As Boolean” on page 5-14

Property InputArrayFormat As mwArrayFormat

This property of type mwArrayFormat controls the formatting of arrays passed as
input parameters to MATLAB Compiler SDK class methods. The default value is
mwArrayFormatMatrix. The behaviors indicated by this flag are listed in the next table.

 Class MWFlags

5-13

Array Formatting Rules for Input Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the default
conversion rules listed in “Data Conversion
Rules”.

mwArrayFormatCell Coerces all arrays into cell arrays. Input
scalar or numeric array arguments are
converted to cell arrays with each cell
containing a scalar value for the respective
index.

mwArrayFormatMatrix Coerces all arrays into matrices. When an
input argument is encountered that is an
array of Variants (the default behavior
is to convert it to a cell array), the data
converter converts this array to a matrix
if each Variant is single valued, and
all elements are homogeneous and of a
numeric type. If this conversion is not
possible, creates a cell array.

Property InputArrayIndFlag As Long

This property governs the level at which to apply the rule set by the InputArrayFormat
property for nested arrays (an array of Variants is passed and each element of the array
is an array itself). It is not necessary to modify this flag for varargin parameters. The
data conversion code automatically increments the value of this flag by 1 for varargin
cells, thus applying the InputArrayFormat flag to each cell of a varargin parameter.
The default value is 0.

Property OutputArrayFormat As mwArrayFormat

This property of type mwArrayFormat controls the formatting of arrays passed as output
parameters to class methods. The default value is mwArrayFormatAsIs. The behaviors
indicated by this flag are listed in the next table.

Array Formatting Rules for Output Arrays

5 Utility Library for Microsoft COM Components

5-14

Value Behavior

mwArrayFormatAsIs Converts arrays according to the default
conversion rules listed in “Data Conversion
Rules”.

mwArrayFormatMatrix Coerces all arrays into matrices. When an
output cell array argument is encountered
(the default behavior converts it to an array
of Variants), the data converter converts
this array to a Variant that contains a
simple numeric array if each cell is single
valued, and all elements are homogeneous
and of a numeric type. If this conversion
is not possible, an array of Variants is
created.

mwArrayFormatCell Coerces all output arrays into arrays
of Variants. Output scalar or numeric
array arguments are converted to arrays
of Variants, each Variant containing a
scalar value for the respective index.

Property OutputArrayIndFlag As Long

This property is similar to the InputArrayIndFalg property, as it governs the level
at which to apply the rule set by the OutputArrayFormat property for nested arrays.
As with the input case, this flag is automatically incremented by 1 for a varargout
parameter. The default value of this flag is 0.

Property AutoResizeOutput As Boolean

This flag applies to Excel ranges only. When the target output from a method call is a
range of cells in an Excel worksheet, and the output array size and shape is not known at
the time of the call, setting this flag to True instructs the data conversion code to resize
each Excel range to fit the output array. Resizing is applied relative to the upper left
corner of each supplied range. The default value for this flag is False.

Property TransposeOutput As Boolean

Setting this flag to True transposes the output arguments. This flag is useful when
processing an output parameter from a method call on a COM component, where the

 Class MWFlags

5-15

MATLAB function returns outputs as row vectors, and you desire to place the data into
columns. The default value for this flag is False.

Property DataConversionFlags As MWDataConversionFlags

The DataConversionFlags property controls how input variables are processed when
type coercion is needed. The MWDataConversionFlags class is a noncreatable class
accessed through an MWFlags class instance. This class contains these properties:

• “Property CoerceNumericToType As mwDataType” on page 5-15
• “PropertyDateBias As Long” on page 5-15
• “Property InputDateFormat As mwDateFormat” on page 5-16
• “PropertyOutputAsDate As Boolean” on page 5-17
• “ReplaceMissing As mwReplaceMissingData” on page 5-17

Property CoerceNumericToType As mwDataType

This property converts all numeric input arguments to one specific MATLAB type. This
flag is useful is when variables maintained within the Visual Basic code are different
types, e.g., Long, Integer, etc., and all variables passed to the compiled MATLAB code
must be doubles. The default value for this property is mwTypeDefault, which uses the
default rules in “Data Conversion Rules”.

PropertyDateBias As Long

This property sets the date bias for performing COM to MATLAB numeric date
conversions. The default value of this property is 693960, representing the difference
between the COM Date type and MATLAB numeric dates. This flag allows existing
MATLAB code that already performs the increment of numeric dates by 693960 to
be used unchanged with COM components. To process dates with such code, set this
property to 0.

This example uses data conversion flags to reshape the output from a method compiled
from a MATLAB function that produces an output vector of unknown length.

function p = myprimes(n)

if length(n)~=1, error('N must be a scalar'); end

if n < 2, p = zeros(1,0); return, end

p = 1:2:n;

q = length(p);

p(1) = 2;

for k = 3:2:sqrt(n)

5 Utility Library for Microsoft COM Components

5-16

 if p((k+1)/2)

 p(((k*k+1)/2):k:q) = 0;

 end

end

p = (p(p>0));

This function produces a row vector of all the prime numbers between 0 and n. Assume
that this function is included in a class named myclass that is included in a component
named mycomponent with a version of 1.0. The subroutine takes an Excel range
and a Double as inputs, and places the generated prime numbers into the supplied
range. The MATLAB function produces a row vector, although you want the output
in column format. It also produces an unknown number of outputs, and you do not
want to truncate any output. To handle these issues, set the TransposeOutput flag
and the AutoResizeOutput flag to True. In previous examples, the Visual Basic
CreateObject function creates the necessary classes. This example uses an explicit type
declaration for the aClass variable. As with previous examples, this function assumes
that MWInitApplication has been previously called.

Sub GenPrimes(R As Range, n As Double)

 Dim aClass As mycomponent.myclass

 On Error GoTo Handle_Error

 Set aClass = New mycomponent.myclass

 aClass.MWFlags.ArrayFormatFlags.AutoResizeOutput = True

 aClass.MWFlags.ArrayFormatFlags.TransposeOutput = True

 Call aClass.myprimes(1, R, n)

 Exit Sub

Handle_Error:

 MsgBox (Err.Description)

End Sub

Property InputDateFormat As mwDateFormat

This property converts dates passed as input parameters to method calls on MATLAB
Compiler SDK classes. The default value is mwDateFormatNumeric. The behaviors
indicated by this flag are shown in the following table.

Conversion Rules for Input Dates

Value Behavior

mwDateFormatNumeric Convert dates to numeric values as
indicated by the rule listed in “Data
Conversion Rules”.

 Class MWFlags

5-17

Value Behavior

mwDateFormatString Convert input dates to strings.

PropertyOutputAsDate As Boolean

This property processes an output argument as a date. By default, numeric dates that
are output parameters from compiled MATLAB functions are passed as Doubles that
need to be decremented by the COM date bias (693960) as well as coerced to COM dates.
Set this flag to True to convert all output values of type Double.

ReplaceMissing As mwReplaceMissingData

This property is an enumeration and can have two possible values: mwReplaceNaN and
mwReplaceZero.

To treat empty cells referenced by input parameters as zeros, set the value to
mwReplaceZero. To treat empty cells referenced by input parameters as NaNs (Not a
Number), set the value to mwReplaceNaN.

By default, the value is mwReplaceZero.

Sub Clone(ppFlags As MWFlags)

Creates a copy of an MWFlags object.

Parameters

Argument Type Description

ppFlags MWFlags Reference to an uninitialized
MWFlags object that receives
the copy

Return Value

None

Remarks

Clone allocates a new MWFlags object and creates a deep copy of the object's contents.
Call this function when a separate object is required instead of a shared copy of an
existing object reference.

5 Utility Library for Microsoft COM Components

5-18

Class MWStruct
The MWStruct class passes or receives a Struct type to or from a compiled class
method. This class contains seven properties/methods:

In this section...

“Sub Initialize([varDims], [varFieldNames])” on page 5-18
“Property Item([i0], [i1], ..., [i31]) As MWField” on page 5-19
“Property NumberOfFields As Long” on page 5-22
“Property NumberOfDims As Long” on page 5-22
“Property Dims As Variant” on page 5-22
“Property FieldNames As Variant” on page 5-22
“Sub Clone(ppStruct As MWStruct)” on page 5-23

Sub Initialize([varDims], [varFieldNames])

This method allocates a structure array with a specified number and size of dimensions
and a specified list of field names.

Parameters

Argument Type Description

varDims Variant Optional array of dimensions
varFieldNames Variant Optional array of field names

Return Value

None.

Remarks

When created, an MWStruct object has a dimensionality of 1-by-1 and no fields. The
Initialize method dimensions the array and adds a set of named fields to each
element. Each time you call Initialize on the same object, it is redimensioned. If
you do not supply the varDims argument, the existing number and size of the array's
dimensions unchanged. If you do not supply the varFieldNames argument, the existing
list of fields is not changed. Calling Initialize with no arguments leaves the array
unchanged.

 Class MWStruct

5-19

Example

The following Visual Basic code illustrates use of the Initialize method to dimension
struct arrays.

Sub foo ()

 Dim x As MWStruct

 Dim y As MWStruct

 On Error Goto Handle_Error

 'Create 1X1 struct arrays with no fields for x, and y

 Set x = new MWStruct

 Set y = new MWStruct

 'Initialize x to be 2X2 with fields "red", "green",

 ' and "blue"

 Call x.Initialize(Array(2,2), Array("red", "green", "blue"))

 'Initialize y to be 1X5 with fields "name" and "age"

 Call y.Initialize(5, Array("name", "age"))

 'Re-dimension x to be 3X3 with the same field names

 Call x.Initialize(Array(3,3))

 'Add a new field to y

 Call y.Initialize(, Array("name", "age", "salary"))

 Exit Sub

Handle_Error:

 MsgBox(Err.Description)

End Sub

Property Item([i0], [i1], ..., [i31]) As MWField

The Item property is the default property of the MWStruct class. This property is used to
set/get the value of a field at a particular index in the structure array.

Parameters

Argument Type Description

i0,i1, ..., i31 Variant Optional index arguments.
Between 0 and 32 index
arguments can be entered.
To reference an element of

5 Utility Library for Microsoft COM Components

5-20

Argument Type Description

the array, specify all indexes
as well as the field name.

Remarks

When accessing a named field through this property, you must supply all dimensions of
the requested field as well as the field name. This property always returns a single field
value, and generates a bad index error if you provide an invalid or incomplete index list.
Index arguments have four basic formats:

• Field name only

This format may be used only in the case of a 1-by-1 structure array and returns the
named field's value. For example:

x("red") = 0.2

x("green") = 0.4

x("blue") = 0.6

In this example, the name of the Item property was neglected. This is possible since
the Item property is the default property of the MWStruct class. In this case the two
statements are equivalent:

x.Item("red") = 0.2

x("red") = 0.2

• Single index and field name

This format accesses array elements through a single subscripting notation. A single
numeric index n followed by the field name returns the named field on the nth array
element, navigating the array linearly in column-major order. For example, consider a 2-
by-2 array of structures with fields "red", "green" , and "blue" stored in a variable x.
These two statements are equivalent:

y = x(2, "red")

y = x(2, 1, "red")

• All indices and field name

This format accesses an array element of an multidimensional array by specifying n
indices. These statements access all four of the elements of the array in the previous
example:

 Class MWStruct

5-21

For I From 1 To 2

 For J From 1 To 2

 r(I, J) = x(I, J, "red")

 g(I, J) = x(I, J, "green")

 b(I, J) = x(I, J, "blue")

 Next

Next

• Array of indices and field name

This format accesses an array element by passing an array of indices and a field name.
The next example rewrites the previous example using an index array:

Dim Index(1 To 2) As Integer

For I From 1 To 2

 Index(1) = I

 For J From 1 To 2

 Index(2) = J

 r(I, J) = x(Index, "red")

 g(I, J) = x(Index, "green")

 b(I, J) = x(Index, "blue")

 Next

Next

With these four formats, the Item property provides a very flexible indexing mechanism
for structure arrays. Also note:

• You can combine the last two indexing formats. Several index arguments supplied in
either scalar or array format are concatenated to form one index set. The combining
stops when the number of dimensions has been reached. For example:

Dim Index1(1 To 2) As Integer

Dim Index2(1 To 2) As Integer

Index1(1) = 1

Index1(2) = 1

Index2(1) = 3

Index2(2) = 2

x(Index1, Index2, 2, "red") = 0.5

The last statement resolves to

x(1, 1, 3, 2, 2, "red") = 0.5

5 Utility Library for Microsoft COM Components

5-22

• The field name must be the last index in the list. The following statement produces an
error:

y = x("blue", 1, 2)

• Field names are case sensitive.

Property NumberOfFields As Long

The read-only NumberOfFields property returns the number of fields in the structure
array.

Property NumberOfDims As Long

The read-only NumberOfDims property returns the number of dimensions in the struct
array.

Property Dims As Variant

The read-only Dims property returns an array of length NumberOfDims that contains the
size of each dimension of the struct array.

Property FieldNames As Variant

The read-only FieldNames property returns an array of length NumberOfFields that
contains the field names of the elements of the structure array.

Example

The next Visual Basic code sample illustrates how to access a two-dimensional structure
array's fields when the field names and dimension sizes are not known in advance.

Sub foo ()

 Dim x As MWStruct

 Dim Dims as Variant

 Dim FieldNames As Variant

 On Error Goto Handle_Error

 '

 '... Call a method that returns an MWStruct in x

 Class MWStruct

5-23

 '

 Dims = x.Dims

 FieldNames = x.FieldNames

 For I From 1 To Dims(1)

 For J From 1 To Dims(2)

 For K From 1 To x.NumberOfFields

 y = x(I,J,FieldNames(K))

 ' ... Do something with y

 Next

 Next

 Next

Exit Sub

Handle_Error:

 MsgBox(Err.Description)

End Sub

Sub Clone(ppStruct As MWStruct)

Creates a copy of an MWStruct object.

Parameters

Argument Type Description

ppStruct MWStruct Reference to an uninitialized
MWStruct object to receive
the copy

Return Value

None

Remarks

Clone allocates a new MWStruct object and creates a deep copy of the object's contents.
Call this function when a separate object is required instead of a shared copy of an
existing object reference.

Example

The following Visual Basic example illustrates the difference between assignment and
Clone for MWStruct objects.

5 Utility Library for Microsoft COM Components

5-24

Sub foo ()

 Dim x1 As MWStruct

 Dim x2 As MWStruct

 Dim x3 As MWStruct

 On Error Goto Handle_Error

 Set x1 = new MWStruct

 x1("name") = "John Smith"

 x1("age") = 35

 'Set reference of x1 to x2

 Set x2 = x1

 'Create new object for x3 and copy contents of x1 into it

 Call x1.Clone(x3)

 'x2's "age" field is

 'also modified 'x3's "age" field unchanged

 x1("age") = 50

 .

 .

 .

 Exit Sub

Handle_Error:

 MsgBox(Err.Description)

End Sub

 Class MWField

5-25

Class MWField
The MWField class holds a single field reference in an MWStruct object. This class is
noncreatable and contains four properties/methods:

In this section...

“Property Name As String” on page 5-25
“Property Value As Variant” on page 5-25
“Property MWFlags As MWFlags” on page 5-25
“Sub Clone(ppField As MWField)” on page 5-25

Property Name As String

The name of the field (read only).

Property Value As Variant

Stores the field's value (read/write). The Value property is the default property of the
MWField class. The value of a field can be any type that is coercible to a Variant, as well
as object types.

Property MWFlags As MWFlags

Stores a reference to an MWFlags object. This property sets or gets the array formatting
and data conversion flags for a particular field. Each field in a structure has its own
MWFlags property. This property overrides the value of any flags set on the object whose
methods are called.

Sub Clone(ppField As MWField)

Creates a copy of an MWField object.

Parameters

Argument Type Description

ppField MWField Reference to an uninitialized
MWField object to receive
the copy

5 Utility Library for Microsoft COM Components

5-26

Return Value

None.

Remarks

Clone allocates a new MWField object and creates a deep copy of the object's contents.
Call this function when a separate object is required instead of a shared copy of an
existing object reference.

 Class MWComplex

5-27

Class MWComplex

The MWComplex class passes or receives a complex numeric array into or from a compiled
class method. This class contains four properties/methods:

In this section...

“Property Real As Variant” on page 5-27
“Property Imag As Variant” on page 5-27
“Property MWFlags As MWFlags” on page 5-28
“Sub Clone(ppComplex As MWComplex)” on page 5-28

Property Real As Variant

Stores the real part of a complex array (read/write). The Real property is the default
property of the MWComplex class. The value of this property can be any type coercible to
a Variant, as well as object types, with the restriction that the underlying array must
resolve to a numeric matrix (no cell data allowed). Valid Visual Basic numeric types
for complex arrays include Byte, Integer, Long, Single, Double, Currency, and
Variant/vbDecimal.

Property Imag As Variant

Stores the imaginary part of a complex array (read/write). The Imag property is optional
and can be Empty for a pure real array. If the Imag property is not empty and the size
and type of the underlying array do not match the size and type of the Real property's
array, an error results when the object is used in a method call.

Example

The following Visual Basic code creates a complex array with the following entries:

 x = [1+i 1+2i

 2+i 2+2i]

Sub foo()

 Dim x As MWComplex

 Dim rval(1 To 2, 1 To 2) As Double

 Dim ival(1 To 2, 1 To 2) As Double

5 Utility Library for Microsoft COM Components

5-28

 On Error Goto Handle_Error

 For I = 1 To 2

 For J = 1 To 2

 rval(I,J) = I

 ival(I,J) = J

 Next

 Next

 Set x = new MWComplex

 x.Real = rval

 x.Imag = ival

 .

 .

 .

 Exit Sub

Handle_Error:

 MsgBox(Err.Description)

End Sub

Property MWFlags As MWFlags

Stores a reference to an MWFlags object. This property sets or gets the array formatting
and data conversion flags for a particular complex array. Each MWComplex object has its
own MWFlags property. This property overrides the value of any flags set on the object
whose methods are called.

Sub Clone(ppComplex As MWComplex)

Creates a copy of an MWComplex object.

Parameters

Argument Type Description

ppComplex MWComplex Reference to an uninitialized
MWComplex object to receive
the copy

Return Value

None

 Class MWComplex

5-29

Remarks

Clone allocates a new MWComplex object and creates a deep copy of the object's contents.
Call this function when a separate object is required instead of a shared copy of an
existing object reference.

5 Utility Library for Microsoft COM Components

5-30

Class MWSparse

The MWSparse class passes or receives a two-dimensional sparse numeric array into or
from a compiled class method. This class has seven properties/methods:

In this section...

“Property NumRows As Long” on page 5-30
“Property NumColumns As Long” on page 5-30
“Property RowIndex As Variant” on page 5-30
“Property ColumnIndex As Variant” on page 5-31
“Property Array As Variant” on page 5-31
“Property MWFlags As MWFlags” on page 5-31
“Sub Clone(ppSparse As MWSparse)” on page 5-31

Property NumRows As Long

Stores the row dimension for the array. The value of NumRows must be nonnegative.
If the value is zero, the row index is taken from the maximum of the values in the
RowIndex array.

Property NumColumns As Long

Stores the column dimension for the array. The value of NumColumns must be
nonnegative. If the value is zero, the row index is taken from the maximum of the values
in the ColumnIndex array.

Property RowIndex As Variant

Stores the array of row indices of the nonzero elements of the array. The value of this
property can be any type coercible to a Variant, as well as object types, with the
restriction that the underlying array must resolve to or be coercible to a numeric matrix
of type Long. If the value of NumRows is nonzero and any row index is greater than
NumRows, a bad-index error occurs. An error also results if the number of elements in
the RowIndex array does not match the number of elements in the Array property's
underlying array.

 Class MWSparse

5-31

Property ColumnIndex As Variant

Stores the array of column indices of the nonzero elements of the array. The value
of this property can be any type coercible to a Variant, as well as object types, with
the restriction that the underlying array must resolve to or be coercible to a numeric
matrix of type Long. If the value of NumColumns is nonzero and any column index is
greater than NumColumns, a bad-index error occurs. An error also results if the number
of elements in the ColumnIndex array does not match the number of elements in the
Array property's underlying array.

Property Array As Variant

Stores the nonzero array values of the sparse array. The value of this property can be
any type coercible to a Variant, as well as object types, with the restriction that the
underlying array must resolve to or be coercible to a numeric matrix of type Double or
Boolean.

Property MWFlags As MWFlags

Stores a reference to an MWFlags object. This property sets or gets the array formatting
and data conversion flags for a particular sparse array. Each MWSparse object has its
own MWFlags property. This property overrides the value of any flags set on the object
whose methods are called.

Sub Clone(ppSparse As MWSparse)

Creates a copy of an MWSparse object.

Parameters

Argument Type Description

ppSparse MWSparse Reference to an uninitialized
MWSparse object to receive
the copy

Return Value

None.

5 Utility Library for Microsoft COM Components

5-32

Remarks

Clone allocates a new MWSparse object and creates a deep copy of the object's contents.
Call this function when a separate object is required instead of a shared copy of an
existing object reference.

Example

The following Visual Basic sample creates a 5-by-5 tridiagonal sparse array with the
following entries:

X = [2 -1 0 0 0

 -1 2 -1 0 0

 0 -1 2 -1 0

 0 0 -1 2 -1

 0 0 0 -1 2]

Sub foo()

 Dim x As MWSparse

 Dim rows(1 To 13) As Long

 Dim cols(1 To 13) As Long

 Dim vals(1 To 13) As Double

 Dim I As Long, K As Long

 On Error GoTo Handle_Error

 K = 1

 For I = 1 To 4

 rows(K) = I

 cols(K) = I + 1

 vals(K) = -1

 K = K + 1

 rows(K) = I

 cols(K) = I

 vals(K) = 2

 K = K + 1

 rows(K) = I + 1

 cols(K) = I

 vals(K) = -1

 K = K + 1

 Next

 rows(K) = 5

 cols(K) = 5

 vals(K) = 2

 Set x = New MWSparse

 Class MWSparse

5-33

 x.NumRows = 5

 x.NumColumns = 5

 x.RowIndex = rows

 x.ColumnIndex = cols

 x.Array = vals

 .

 .

 .

 Exit Sub

Handle_Error:

 MsgBox (Err.Description)

End Sub

5 Utility Library for Microsoft COM Components

5-34

Class MWArg

The MWArg class passes a generic argument into a compiled class method. This class
passes an argument for which the data conversion flags are changed for that one
argument. This class has three properties/methods:

In this section...

“Property Value As Variant” on page 5-34
“Property MWFlags As MWFlags” on page 5-34
“Sub Clone(ppArg As MWArg)” on page 5-34

Property Value As Variant

The Value property stores the actual argument to pass. Any type that can be passed to a
compiled method is valid for this property.

Property MWFlags As MWFlags

Stores a reference to an MWFlags object. This property sets or gets the array formatting
and data conversion flags for a particular argument. Each MWArg object has its own
MWFlags property. This property overrides the value of any flags set on the object whose
methods are called.

Sub Clone(ppArg As MWArg)

Creates a copy of an MWArg object.

Parameters

Argument Type Description

ppArg MWArg Reference to an uninitialized
MWArg object to receive the
copy

Return Value

None.

 Class MWArg

5-35

Remarks

Clone allocates a new MWArg object and creates a deep copy of the object's contents. Call
this function when a separate object is required instead of a shared copy of an existing
object reference.

5 Utility Library for Microsoft COM Components

5-36

Enum mwArrayFormat

The mwArrayFormat enumeration is a set of constants that denote an array formatting
rule for data conversion.

mwArrayFormat Values

Constant Numeric Value Description

mwArrayFormatAsIs 0 Do not reformat the array.
mwArrayFormatMatrix 1 Format the array as a

matrix.
mwArrayFormatCell 2 Format the array as a cell

array.

 Enum mwDataType

5-37

Enum mwDataType

The mwDataType enumeration is a set of constants that denote a MATLAB numeric type.

mwDataType Values

Constant Numeric Value MATLAB Type

mwTypeDefault 0 Not applicable
mwTypeLogical 3 logical

mwTypeChar 4 char

mwTypeDouble 6 double

mwTypeSingle 7 single

mwTypeInt8 8 int8

mwTypeUint8 9 uint8

mwTypeInt16 10 int16

mwTypeUint16 11 uint16

mwTypeInt32 12 int32

mwTypeUint32 13 uint32

5 Utility Library for Microsoft COM Components

5-38

Enum mwDateFormat

The mwDateFormat enumeration is a set of constants that denote a formatting rule for
dates.

mwDateFormat Values

Constant Numeric Value Description

mwDateFormatNumeric 0 Format dates as numeric
values

mwDateFormatString 1 Format dates as strings

6

Functions — Alphabetical List

6 Functions — Alphabetical List

6-2

mcrinstaller
Display version and location information for MATLAB Runtime installer corresponding
to current platform

Syntax
[INSTALLER_PATH, MAJOR, MINOR, PLATFORM, LIST] = mcrinstaller;

Description
Displays information about available MATLAB Runtime installers using the format:
[INSTALLER_PATH, MAJOR, MINOR, PLATFORM, LIST] = mcrinstaller; where:

• INSTALLER_PATH is the full path to the installer for the current platform.
• MAJOR is the major version number of the installer.
• MINOR is the minor version number of the installer.
• PLATFORM is the name of the current platform (returned by COMPUTER(arch)).
• LIST is a cell array of strings containing the full paths to MATLAB Runtime

installers for other platforms. This list is non-empty only in a multi-platform
MATLAB installation.

Note: You must distribute the MATLAB Runtime library to your end users to enable
them to run applications developed with MATLAB Compiler or MATLAB Compiler SDK.

See “Install the MATLAB Runtime” for more information about the MATLAB Runtime
installer.

Examples

Find MATLAB Runtime Installer Locations

Display locations of MATLAB Runtime installers for platform. This example shows
output for a win64 system.

 mcrinstaller

6-3

mcrinstaller

The WIN64 MCR Installer, version 7.16, is:

 X:\jobx\clusterc\current\matlab\toolbox\compiler\

 deploy\win64\MCRInstaller.exe

MCR installers for other platforms are located in:

 X:\jobx\clusterc\current\matlab\toolbox\compiler\

 deploy\win64

 win64 is the value of COMPUTER(win64) on

 the target machine.

For more information, read your local MCR Installer help.

Or see the online documentation at MathWorks' web site. (Page

 may load slowly.)

ans =

X:\jobx\clusterc\current\matlab\toolbox\compiler\

 deploy\win64\MCRInstaller.exe

6 Functions — Alphabetical List

6-4

mcrversion
Determine version of installed MATLAB Runtime

Syntax

[major, minor] = mcrversion;

Description

The MATLAB Runtime version number consists of two digits, separated by a decimal
point. This function returns each digit as a separate output variable: [major, minor]
= mcrversion; Major and minor are returned as integers.

If the version number ever increases to three or more digits, call mcrversion with more
outputs, as follows:

[major, minor, point] = mcrversion;

At this time, all outputs past “minor” are returned as zeros.

Typing only mcrversion will return the major version number only.

Examples
mcrversion

ans =

 7

